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Abstract 
       A brief background to the development of the rock engineering design process is given, showing that 
since the development of the science of mathematics, deterministic methods have been used to perform 
various calculations. The variability of rock properties and support characteristics have always been 
known. However, they were not explicitly used in design but compensated for by the use of a safety 
factor, i.e. making a design more stringent than required by the calculations. The problem with this 
procedure is that the effect of increasing a safety factor on the overall stability of the design cannot be 
known because the range of variability is not incorporated in the design. The only way to overcome this 
problem is to make use of the science of probability. In doing that, the ranges of rock qualities are 
explicitly included in the design and the probability of failure is exposed. Examples of common rock 
engineering calculations in mining are provided, showing that the probabilistic designs are not difficult or 
time consuming to perform and yield much more useful outcomes than merely using a safety factor. 
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Introduction                                  
      Rock control has been practised ever 
since the first hole in the ground was made 
by man. Even in the very ancient times, it 
is for instance conceivable that loose 
fragments of rock would have been 
removed before they could cause injury.  
The subterranean city of Derinkuyu in 
Turkey excavated more than 3000 years 
ago, had arched roofs and shaped pillars. 
In the 2000 year old Roman limestone 
mines underneath Paris, roof control pillars 
built of stone still offer support today.  
There is no evidence today that those 
designs were based on mathematics. That 
only came much later.  
With the development of the science of 
mathematics and the wider teaching of 
mathematics, it became possible to 
develop quantified laws of nature and 
based on that, the extensions to predict the 
behaviour of rock.  

It became possible to calculate the weight 
of blocks of rock and then to calculate the 
strength required for supports to withstand 
that weight.  
Once computers became available and 
accessible, it became possible to develop 
and use highly sophisticated mathematical 
routines and complex mining or other 
excavation lay-outs. Yet, all the 
mathematical routines that are used are 
based on explicitly defined singular input 
conditions. 
It is universally appreciated that rock is 
variable in nature, given to imperfections. 
The most common way to accommodate 
that, is to incorporate a safety factor in 
designs, in other words to multiply the 
outcome of a resistance calculation by 
some factor to compensate for unknown 
deviations from the average input numbers 
that were used.   
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This is a reasonable and under most 
conditions a safe approach, but not an 
optimum one. In this way, we do 
somewhat account for variability, but in a 
manner that we cannot quantify: a safety 
factor of 2, for instance, means that the 
average support is twice as strong as the 
average load, but it certainly does not 
follow that the overall design is twice as 
likely to be stable. In those areas where the 
load is greater than the average, and the 
support resistance less than the average, 
we simply don’t know how stable the 
design is.  
With the deterministic approach, we can 
only say for certain what the situation is at 
the point where the average load coincides 
with the average of the support resistance, 
but without even knowing where that point 
is! 
For too long, as geotechnical engineers, we 
have been reluctant to incorporate the 
science of probability in our designs. This 
may in part be due to a suspicious view of 
statistics caused by the irresponsible use 
thereof in advertising and other areas of 
society. It may also simply be due to the 
fact that it is not included in all rock 
engineering training programs and 
consequently, rock engineers are not 
always equipped with the necessary skills. 
Yet, if properly used, it is a vital tool in 
our arsenal. It is the only science which we 
can use to quantify uncertainty and to shed 
light on the probability of failure of our 
designs.   
This paper will show examples of how the 
science of probability can be used in 
common designs on a more rational basis 
than with the deterministic design 
procedures based on average values with a 
compensating safety factor. 
 

Background of Probabilistic Design 
       The notion of using probabilistic 
design procedures in rock engineering is 
not new. There are several examples of 
scientific procedures to use probabilistic 
concepts in rock engineering design in 
literature. 
 In South Africa, Stacey [1] presented a 
simple probabilistic approach to handle 
rockfalls in deep level gold mine workings 
while Esterhuizen and Streuders [2] 
presented a probabilistic procedure to 
evaluate the probability of instability 
arising due to keyblock failure, based on 
the distribution of discontinuities in the 
roof. Hoek [3] gives an example of using 
the probability of failure concept to 
evaluate the stability of a rock slope. Hantz 
et al [4] advocate the combined use of 
fundamental rock engineering concepts, 
history and probabilistic procedures to 
assess the rockfall hazard, using a potential 
rock slope failure in the Grenoble area as 
an illustrative example. Tono et al [5] 
discuss the application of statistics to 
handle imprecise data to evaluate the 
reliability of tunnel linings. Esterhuizen 
(2003)’s JBlock program [6] has been 
available for some time and is included in 
rock engineering curricula at certain 
universities. Harr [7] presents several 
statistical procedures used for civil 
engineering design – this work is unique in 
the sense that it explains statistics from a 
practical engineering perspective as 
opposed to a classical statistical 
perspective.  
There are several more examples; the 
above are included to indicate that 
examples of several applications of 
probabilistic procedures in several 
branches of the broader rock engineering 
discipline already exist.  Yet, after several 
decades, even though the application has 
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been demonstrated to be superior to simple 
deterministic design in several areas, 
reliability based design is not in general 
use in the field of rock engineering. There 
could be several reasons for this.  
The most important obstacle may well be 
that the application thereof will force the 
general public as well as engineers to 
come to terms with the fact that explicit 
probabilities of failure will be stated in 
designs. The probability of failure per se is 
not new. It has always been there, it has 
always been an integral part of any design, 
but numbers have not been calculated and 
brought into the open.  
Stacey [8] points out that the wider 
adoption of the concept of the probability 
of failure will require the participation of 
management at executive level to state 
design objectives in those terms, but that 
this has not happened. Hoek [9] offers 
some hope by stating “…..there does 
appear to be a slow but steady trend in 
society to accept the concepts of risk 
analysis more readily than has been the 
case in the past”.  
The definition of acceptable risk levels 
will require serious debate. In the mining 
industry, the trend internationally is to aim 
for zero harm. It is doubtful whether 
“zero” in the public perception coincides 
with the true meaning of the word in 
scientific terms. It is perhaps more 
appropriate to equate zero harm to 
acceptable harm levels in the home 
environment – which is not true zero and 
in itself difficult to determine as those 
risks are not the same the world over.  
 
Basis of Reliability based Design 
       Reliability based design in rock 
engineering is based on the fundamental 
acceptance that rock qualities are variable 
and so are the qualities of artificial support 

and even adherence to design dimensions. 
The design is then based not on average 
values as in deterministic design processes, 
but on the distributions of the input 
variables. The output is then also in the 
form of a distribution instead of a single 
number. The output distribution is then 
very simply used to determine the 
probability that failure will occur.  
In order to perform a reliability based 
design, the variabilities of the various 
input parameters also have to be known. 
This does not necessarily require more 
work to be done for data collection. In 
most cases, the data have already been 
gathered in order to calculate average 
numbers for the deterministic input. It 
merely requires one or two additional 
calculations to be performed, which is no 
trouble at all with commonly used 
software like Microsoft Excel.  
At the core of the process, the fundamental 
deterministic algorithms are still there. 
Essentially, the input ranges are merely 
used with the same algorithm as would be 
used for the deterministic calculation, to 
calculate a number of outputs and then to 
base decisions on the range of outputs. The 
single number resulting from a 
deterministic calculation is merely 
extended into a range, based on the range 
of input variables.  
The nature of the output distribution is a 
function of the nature of the input 
variables. For instance, the wider the 
spread of the input variables, the wider the 
spread of the output. The wider the range 
of the outputs, the less certain the design 
and the higher the probability of failure. 
This is the fundamental improvement 
brought about by using a probabilistic 
approach: with the deterministic approach, 
the range of possible outcomes cannot be 
quantified and hence the uncertainty is not 
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known while with the probabilistic 
approach, it is highlighted.  
These concepts will become clearer with 
the examples which follow. 
 
Handy Techniques 
      There are a number of handy, 
relatively simple techniques that can be 
used to handle the probabilistic routines. 
Most of these can be performed at least at 
entry level with commonly available 
software like Microsoft Excel. There are 
also a number of tailors made statistical 
packages available, one of the more 
popular ones being @Risk, an add-on 
module for Excel.  
There are several good handbooks that 
explain the procedures in detail, Harr [7]  
being particularly useful for engineering 
applications. In this paper, only some 
examples are presented as illustration of 
the ease with which the procedures can be 
performed and the usefulness of the 
approach.  
 
The Point Estimate Method (PEM) 
      The PEM is useful in situations where 
the deterministic algorithms to be used are 
relatively simple and where the 
distributions of the input parameters are 
known. It can then be used to determine 
the distribution of the safety factor and the 
probability of failure.  
In essence, a small number of safety factor 
calculations are performed by varying the 
input according to the distributions. The 
number of calculations to be performed are 
2n, where n is the number of variable 
inputs. The calculations are performed 
using the mean plus or minus one standard 
deviation for each variable. The following 
example will illustrate the process. 
 

PEM Example 
      The probability of planar failure for the 
following situation is to be investigated, 
see Figure 1.  
The area of the plane per running metre is 
6.9 m2. The plane has an inclination of 600 
and the weight of the material that may fail 
is 275.26 kN per running metre.  
The equation for the safety factor, 
assuming that the slope is dry and 
unsupported, is: 
 
         (1) 
 
where, 
A = area of plane 
W = weight of plane 
c = cohesion 
 = inclination of plane 
= angle of friction of plane. 
 

In this example, the cohesion and angle of 
friction are variables. The mean and 
standard deviation of the cohesion is 29 
kPa and 5 kPa respectively and that of the 
angle of friction 320 and 40 respectively. 
As there are two independent variables, the 
number of calculations required is 22 = 4. 
For each calculation, the constants (in this 
case A, W and ) will not be changed, 
while the following will be used for c and 
: 
c + standard deviation: 34 kPa 
c – standard deviation: 24 kPa 
 + standard deviation: 360 

 – standard deviation: 320  
The calculations are then tabulated as 
follows: 
 

Table 1: Calculations for PEM example 
 

SF(c,f)  SFi,j  SFi,j /4  (SFi,j )2  (SFi,j )2/4  
FS++  1.404  0.351  1.970  0.493  
FS+-  1.291  0.323  1.667  0.417  
FS-+  1.114  0.279  1.242  0.310  
FS--  1.002  0.250  1.003  0.251  
  1.203   1.471  

)sin(
)tan()cos(




W
WAcSF 


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The mean safety factor is the mean of the 4 
calculated safety factors, or 1.2. The 
standard deviation of the safety factors is 
found by: 
     
     
         (2) 
With the deterministic calculation, the 
safety factor can be known but the 
distribution of safety factors brought about 
by the variability of the input, is not 
known. 
The probability of failure is the probability 
that the safety factor is less than 1. This is 
easily found as a standard Excel function,  
 
 
With the deterministic procedure, the 
failure probability of 9.5% is not known, 
although it is real. It is merely hidden. 
 
Overlapping Distributions of Capacity 
and Demand 
       Once it is recognised that both the 
load on any system (the demand) and the 
strength (capacity) are variable, and the 
means and standard deviations are known, 
it is possible to construct frequency 
distributions for them, such as in Figure 3 
in the example to follow. In the area where 
the distributions overlap, the demand 
exceeds the capacity and failure will occur. 
The area of overlap relative to the total 

area, is then the probability that failure will 
occur. This can be quantified.  
The area of overlap, or the probability of 
failure, is 
     
          (3) 
 
     
        (4) 
 
For > 2.2,  
     
        (5) 
 
and for  ≤ 2.2 statistical tables are used. 
The mathematical description of the tables, 
albeit less academically pure, can also be 
used instead of the tables with better 
accuracy: 
     
      

    (6) 
 

Overlapping Distributions Example 
Consider the case where mine pillars are 
used as the primary support. If the mean 
strength of the pillars is 12 MPa and the 
standard deviation, caused by variability of 
pillar height and width, is 3 MPa while the 
mean pillar load is 8 MPa and the standard 
deviation 2 MPa, then the frequency 
distributions will be as shown in Figure 2. 

 

 
Figure 1: Cross section through a plane that has the potential to fail. 
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Figure 2:  Frequency distributions for pillar load and strength. 
 
According to Equation 4,  = 1.11 and 
then Equation 7 yields a value for () of 
0.37. The area of overlap is 0.13 according 
to Equation 3 and the probability of failure 
is then 13%. Note that the deterministic 
safety factor, the ratio of strength to load, 
using just the average values, is 1.5.  
 
Monte Carlo Technique 
      The Monte Carlo technique had its 
origins with the development of the 
nuclear bomb in the United States during 
the second world war, where scientists had 
to consider the effect of a large number of 
variables on the probability of a chain 
reaction occurring. 
It is fundamentally simple. Assuming that 
the distribution characteristics of each of 
the input parameters is known, random 
input numbers are chosen from each 
distribution and for each set of input 
numbers, an output using a known 
algorithm is calculated, see Figure 3. This 
process is repeated several hundreds of 
thousand times. The outputs are then 

collated in a distribution and the final 
outcome is the distribution of outputs with 
a known mean and standard deviation. For 
the purpose of determining a failure 
probability, this simply means that the 
cumulative frequency of safety factors less 
than 1.0 need to be found.  
This technique would be close to 
impossible to perform without the use of 
modern computers, but with computers it 
is relatively simple. Custom made 
software, like the popular Excel add-on @ 
Risk, are available. Even without those, it 
is possible to perform the procedure in 
Excel with some limitations.  
The most important limitations when using 
Excel are that the algorithm has to be 
written such that each variable only occurs 
once in the equation and that the standard 
deviation of the output cannot be 
calculated due to the limitation of that 
procedure in Excel. However, the mean, 
most frequent value and importantly, the 
probability of failure, can be calculated.  

Fr
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In Excel, the process entails defining the 
characteristics of the input distributions 
(these need not be normal distributions) 
and then the basic algorithm to calculate 
for instance the safety factor has to be 
provided. Then, the safety factor is 
calculated any number of times using the 
random function in conjunction with the 
input distribution characteristics and stored 
in a matrix. The frequency distribution of 
the output can then be plotted, basic 
parameters like the mean and most 
frequent value determined and the 
probability of a safety factor being less 
than 1.0 (in other words the probability of 
failure) can be determined.  
The author uses this process for a number 
of applications and even with more than 2 
million output calculations, the execution 
time is minutes and certainly not hours on 
a commonly used computer without 
special additions. 
 
Monte Carlo Example 
     Where a mine roof is supported using 
the suspension principle, i.e. weak material 

in the immediate roof is simply suspended 
from a stronger layer higher up by means 
of roof bolts, see Figure 4, the safety factor 
of the support system can be expressed by: 
 
     
                              (7) 
 
where, 
n = number of bolts per row 
dh = diameter of hole 
lb = length of hole 
tw = thickness of weak layer 
 = shear strength of resin/rock contact 

plane 
B = road width 
s = spacing between rows of roofbolts 
Note that Equation 7 is based on the 
pessimistic assumption that the sidewalls 
of the roadways offer no support to the 
roof, to cater for the situation where joints 
occur at the edges of the roadway. 
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OutputInput 3

Input 2

Input 4

 
 

Figure 3:  Schematic explanation of the Monte Carlo technique 
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Figure 4:  Simplified cross section through a roadway showing the installed support and explaining the 
symbols used in Equation 8. 

 
In Equation 7, all the parameters except 
the number of bolts per row, n, can be 
regarded as variable. Table 2 contains 
reasonable numbers for the distributions of 
the input.  
 

Table 2: Distribution characteristics of input 
parameters for roof support design 

 

Parameter Mean 
value 

Standard 
Deviation 

Hole length 1.55 m 0.1 m 
Thickness of weak 
layer 

1.0 m 0.2 m 

Hole diameter 0.028 m 0.001 m 
Resin/rock shear 
strength 

2 100 
kPa 

450 kPa 

Row spacing 1.7 m 0.3 m 
Road width 6.6 m 1.1 m 

 
The easiest way to handle a number of 
variables in a single equation is to perform 
a Monte Carlo simulation. This was done 
for the distributions in Table 2 as input 
into Equation 7 with 4 bolts per row. The 
distribution of safety factors resulting from 
this is shown in Figure 5. The probability 
of failure was found to be 29%, 

notwithstanding the fact that the 
deterministic safety factor was 1.5, which 
is regarded as acceptable for roof support 
design.  
The results are only valid for the situation 
where joints occur at the edges of the 
roadways, which is not the general case, 
rather a worst case scenario. If the 
sidewalls are indeed regarded as support, 
in other words in the situation where joints 
do not occur at the edges, a simple way of 
performing the calculation is to artificially 
increase the number of bolts per row by 2, 
in other words add one roofbolt in the 
place of each sidewall.  
This more realistic general view results in 
an increased safety factor for the situation, 
to a value of 2.2. The distribution of safety 
factors is also more favourable, see Figure 
6. However, the probability of failure is 
still significant at 14%.  
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Figure 5:  Distribution of roof support safety factors. The safety factors less than 1.0, where failre can be 
expected, are shown in red. 

 

 
 

Figure 6:  Distribution of roof support safety factors for the situation where the sidewalls are also 
regarded as supports. The safety factors less than 1.0, where failure can be expected, are shown in red. 

 

These examples indicate that even with an 
acceptable deterministic safety factor of 
1.5, significant failure can still be expected 
using reasonable values for the variability 
of the input parameters. This will not be 

known if the probabilistic procedure is not 
used, although the failure probability will 
exist in the background. It will be there, 
but it will not be known. The only way to 
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expose it, is to perform the probabilistic 
procedure described here. 
 
Conclusions 
       The most popular method to cater for 
the variability in rock engineering design 
has been to include a factor of safety. With 
the factor of safety, a design is simply 
made a number of times as strong as a 
calculation based on average values would 
require.  
However, this does not really compensate 
for variability, mainly because the range of 
input is not used to determine a suitable 
factor of safety. Therefore the effect of 
variability is not quantified, and 
importantly, it is not known whether or not 
the output is increased sufficiently to 

include most of the impact of the input 
variability. 
The methods to incorporate variability as 
an integral part of calculations are not 
overly complex or time consuming. The 
statistical methods are proven, well 
documented and easy to use.  
In the examples provided in this paper, it 
was shown that day-to-day calculations 
can easily be performed using the 
probabilistic methods. The output is 
substantially improved and much more 
real information becomes available to 
make rational decision making much more 
defensible.  
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