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A B S T R A C T 

 

This study has compared the performance of various optimizers in mineral resource classification using a multilayer perceptron artificial 
neural network (MLP) applied to a copper deposit in Peru. The optimizers Adam (Adaptive moment estimation), RMSprop (Root mean 
square propagation), SGD (Stochastic gradient descent), and Adagrad (Adaptive gradient algorithm) were evaluated to assess their impact 
on the spatial continuity of block classification. A total of 318,443 blocks were estimated using ordinary kriging, based on key variables 
including estimated grade, kriging variance, average sample distance, number of composited samples, the kriging Lagrangian, and geological 
confidence. The methodology involved a mixed multivariable block-by-block clustering using the k-prototypes algorithm, followed by block 
smoothing through an artificial neural network with different optimizers. Results show that the Adam optimizer achieved the highest overall 
accuracy (93%), outperforming both RMSprop and SGD (92%), as well as Adagrad (90%). In addition, Adam yielded a more homogeneous 
classification of mineral resources. It categorized 75,869 blocks as measured (1,395.99 Mt total tonnage, 5.40 Mt fine copper), 120,039 as 
indicated (2,208.72 Mt and 6.56 Mt fine copper), and 122,535 as inferred (2,254.64 Mt and 6.29 Mt fine copper). In conclusion, the model 
trained with the Adam optimizer demonstrated superior precision and stability in mineral resource classification, effectively mitigating the 
“spotty dog effect” and improving the geological coherence of the block model. 
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1. Introduction 

Mineral resources are a fundamental pillar for the development and 
sustainability of modern civilization [1, 2]. Their significance is evident 
across multiple sectors, including socioeconomic growth, industrial 
production, advanced technology manufacturing, and transportation 
infrastructure [2–4]. A mineral resource is defined as “a concentration 
of natural material in or on the Earth’s crust, in such form and quantity 
that its extraction is currently or potentially economically feasible” [5–
7]. Mineral resources are categorized into three classes, Inferred, 
Indicated, and Measured based on the degree of geological confidence 
and available data (Figure 1) [7]. This classification of mineral resources 
subsequently leads to the classification of mineral reserves, which aims 
to quantify the tonnage and average grade of the deposit based on 
economic and technological criteria that ensure its feasibility for 
exploitation [8]. Mineral reserves are further subdivided into two 
categories: Probable and Proved [9–11]. 

The classification of mineral resources is a fundamental process in 
mining exploration projects, particularly in feasibility studies, as it 
allows for the assessment of uncertainty and risk associated with mineral 
deposit estimation. At this stage, geostatistical methods play a crucial 
role by providing tools to quantify spatial variability and improve the 
reliability of resource classification. Key criteria used in classification 
include drill hole spacing, kriging variance, multi-pass kriging schemes,  

 
 
and uncertainty models derived from geostatistical simulations [12–21]. 
The accuracy of this classification directly impacts various subsequent 
stages of the mining project, as key parameters, such as mineral tonnage 
and cutoff grade are dependent on the robustness of the classification 
process [14, 22]. 

The assignment of resource categories is carried out by a Qualified 
Person (QP), who must consider multiple factors to ensure the 
reliability of the classification. These factors include confidence in the 
geological model, spatial characteristics of the deposit, such as grade 
continuity and mineralized domains, data density, and results from the 
analytical quality control program, all of which are essential for 
assessing the accuracy of the estimation method [9, 23, 24]. While some 
of these aspects are qualitative and require geological interpretation, 
others can be quantified using numerical models to establish the 
confidence level in the estimation [25, 26]. 

The classification of mineral resources requires the consideration of 
multiple variables, many of which have been extensively studied in 
literature. According to Cevik et al. [25], the most relevant variables in 
this process (commonly referred to as “features” in machine learning) 
include: (i) the geological domain in which the block is located, (ii) 
kriging variance, (iii) the coefficient of variation of the estimation, (iv) 
the kriging pass, (v) the distance to the nearest sampling or drilling 
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point, (vi) the average distance to the samples used in the estimation, 
and (vii) the number of drillholes utilized. Meanwhile, Owusu [27] 
highlights that geometric methods consider the quantity, proximity, and 
location of the data as key criteria for block estimation, including: (i) 
ellipsoidal search dimensions, (ii) number of drillholes, (iii) minimum 
distance to the nearest drillhole, (iv) average drillhole spacing, and (v) 
octant search declustering. Other approaches have also been used, such 
as drillhole spacing and density [28], Delaunay triangulation [29], and 
spacing calculation for both vertical and non-vertical drillholes [30]. 
Regarding geostatistical methods, several studies have proposed specific 
criteria for resource classification. Emery et al. [31] use variables, such 
as (i) kriging variance, (ii) conditional variance, (iii) relative kriging 
variance, and (iv) relative conditional variance. Mucha et al. [32] 
emphasize the use of the variogram as the primary source of parameters, 
whereas Taghvaeenezhad et al. [33] prioritize (i) estimation variance by 
kriging, (ii) kriging efficiency, and (iii) regression slope. Alternatively, 
Nowak et al. [34] propose an approach based on the indicator variogram 
[35, 36], where drilling data are transformed into binary values with a 
specific threshold, allowing continuity modelling as a basis for 
classification. Other methodologies include combining indicator kriging 
with standardized kriging variance to define a risk index [37], truncated 
Gaussian simulation applied to categorical variables such as rock type 
and mineralization [38], and conditional simulation of ore grades [39, 
40]. Additionally, Silva et al. [41] introduced the use of cross-validation 
variance and classification in moving windows based on conditional 
simulation. Other strategies include the Resource Classification Index 
[42], which integrates combined variance, block estimation value, and a 
calibration factor, as well as error analysis in estimation relative to 
confidence intervals and production rates [43]. Previous studies have 
shown that uncertainty in resource estimation depends on model scale, 
with lower uncertainty in larger volumes due to the attenuation of 
extreme values [24, 39, 40, 44, 45]. In practice, these geometric and 
geostatistical criteria are applied through the manual definition of 
thresholds, even when they are combined in parallel [46–50]. 

Despite the wide range of available approaches, international codes 
do not establish a specific methodology for mineral resource 
classification. Instead, they recommend that the QP quantify the 
confidence level in the estimation before assigning a category, when 
necessary [9]. The absence of categorical guidelines reflects the inherent 
complexity of classification, as it is not feasible to define a single method 
applicable to all mineralization types and geological contexts [13]. 
Consequently, the final decision rests on the QP’s judgment, who must 
select the most appropriate criteria for each specific case [25, 27]. Since 
different criteria can lead to significant variations in ore grade, metal 
content, and tonnage within each category, it is critical to evaluate their 
impact on resource estimation [46]. 

The literature has proposed various approaches for classifying 
mineral resources based on uncertainty. Some authors suggest the use 
of geostatistical simulations to assess the probability of resource 
occurrence [24, 39] or the application of multi-Gaussian kriging as an 
alternative to improve estimation accuracy [51]. However, other 
researchers argue that purely probabilistic approaches can be highly 
sensitive to parameter selection and, therefore, prone to errors. In this 
regard, it has been recommended that these methods be used as 
complementary tools alongside classification methodologies based on 
geometric and geological criteria, which are considered more 
transparent and replicable in mining practice [22]. In general, the 
classification of mineral resources serves as a key mechanism for 
reporting uncertainty in the mining industry. The classification into 
measured, indicated, and inferred resources provides a structured 
framework to communicate the confidence level in resource estimation 
[25, 52, 53]. Other uncertainty assessment strategies include kriging-
based approaches [54, 55], probabilistic methods [56–58], geostatistical 
simulation [43, 44], and machine learning (ML) techniques [59, 60]. A 
widely adopted criterion in resource classification is the 15% rule, which 
stipulates that the estimated grade, metal content, and tonnage should 
exhibit a maximum error of 15% within a 90% confidence interval [61, 
62]. 

Several studies have identified inconsistencies in the application of 

traditional numerical criteria for resource classification, both in 
geometric and geostatistical approaches, particularly when parameters 
are assigned block-by-block. Stephenson et al. [63] pointed out that this 
method can produce spatially inconsistent results that do not respect 
the geological continuity of the deposit, thus requiring additional post-
processing smoothing. To address this issue, various strategies have been 
proposed, such as manual interpretation or the use of smoothing 
algorithms based on moving window statistics [50]. In this context, 
machine learning (ML) has emerged as a promising tool to enhance the 
classification of mineral resources. Cevik et al. [25] implemented an ML-
based approach using a support vector machine (SVM) model with a 
radial basis function kernel, trained with spatial coordinates to reclassify 
blocks. Hernández [46] applied a similar methodology but utilized a 
multilayer artificial neural network (ANN). Additionally, Rossi et al. 
[55] recommended verifying global tonnage-grade curves before and 
after smoothing to assess the impact of processing on estimation 
accuracy. Previous studies have explored various ML techniques in 
resource estimation, highlighting the use of ANN, random forests (RF), 
SVM, and neuro-fuzzy models as the most frequently employed 
methods [64]. Furthermore, these approaches have demonstrated their 
ability to quantify resource uncertainty through confidence intervals in 
estimations [60, 62, 65]. Recent investigations have applied supervised 
machine learning algorithms to predict undiscovered mineral resources 
using techniques such as adaptive boosting (AdaBoost), gradient 
boosting decision trees (GBDT), and extreme gradient boosting 
(XGBoost) [66, 67]. In addition, recent studies have demonstrated the 
potential of ensemble and hybrid machine learning models to improve 
geological prediction tasks in mineral exploration. Farhadi et al. [68] 
introduced an ensemble approach based on the StackingC model, which 
outperformed traditional classifiers in lithological mapping by capturing 
complex nonlinear relationships in geochemical datasets. Similarly, 
Farhadi et al. [69] proposed a hybrid methodology combining machine 
learning regressors with concentration area fractal modeling to detect 
Pb-Zn anomalies in sediment-hosted deposits. In the Peruvian context, 
Cotrina et al. [70] compared supervised learning techniques including 
XGBoost, Random Forest, and deep neural networks for mineral 
resource categorization, demonstrating the accuracy and robustness of 
these models in geologically complex deposits. 

 

 
Figure 1. General relationship between mineral resources and reserves. 

 

Despite advances in the application of machine learning for mineral 
resource estimation and classification, the selection of optimizers in 
neural network models remains an underexplored topic in this field. 
Existing literature has addressed the comparison of optimizers in other 
contexts, such as meteorological variable prediction [71] and image 
processing in computer vision [72], but their impact on mineral 
resource classification has not been extensively studied. Nanni et al. [73] 
analyzed the variants of the Adam optimizer based on the difference 
between the present and past gradients, demonstrating that the step size 
is optimally adjusted for each parameter. However, the influence of 
different optimizers on estimation accuracy, block smoothing, and 
uncertainty reduction in mineral resource classification remains an open 
research question. 

In this context, the present study proposes an innovative 
methodology that addresses this knowledge gap through the following 
contributions: 

- Mixed-variable block-by-block clustering using the k-prototypes 
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algorithm [74], an unsupervised machine learning method that 
simultaneously handles quantitative and qualitative data without 
any restrictions on the number of input features. 

- Block smoothing using a multilayer artificial neural network, 
implementing different optimizers to mitigate the “spotted dog” 
effect inherent in block-by-block classification. 

- Comparison of the impact of different optimizers on mineral 
resource classification, evaluating model accuracy, tonnage, and 
fine content. The optimizers Adam, RMSprop, SGD, and Adagrad 
are considered, providing a comparative analysis to determine 
which optimizer offers the best performance in this specific 
application. 

 

This study is structured into four sections. Section 2 details the 
methodology used in the research, including the models and evaluation 
criteria. Section 3 presents the obtained results and discusses their 
relevance in comparison with previous studies. Finally, Section 4 
outlines the study’s conclusions, highlighting the implications of the 
findings and potential future research directions. 

2. Materials and methods 

This study proposes an integrated methodology for the classification 
of mineral resources in a copper deposit in Peru, combining 
geostatistical techniques with machine learning approaches. A 
multilayer artificial neural network (Multilayer Perceptron, MLP) is 
employed to smooth the block classification, utilizing different 
optimizers (Adam, RMSprop, SGD, and Adagrad). All models were 
trained in Python 3.11.7 within the Jupyter Notebook environment. The 
general workflow of the methodology is illustrated in Figure 2. 

2.1. Geological setting 

The copper deposit analyzed in this study is situated in the central 
Andes of Peru, at an approximate elevation of 4,600 meters above sea 
level. The regional geology comprises a complex lithological assemblage 

indicative of a porphyry-skarn metallogenic environment. The deposit 
is hosted in five distinct lithological units: magnetite skarn, granodiorite, 
dacite porphyry, calcareous sediments, and a volcanic unit locally 
referred to as the Catalina Formation. Copper and molybdenum 
mineralization is spatially distributed across all lithologies, though 
higher concentrations are typically found within the magnetite skarn 
(rock type 1) and granodiorite (rock type 2), suggesting a strong 
lithological control. Mineralization occurs predominantly as 
disseminated sulfides, veinlets, and hydrothermal breccia fillings, with 
alteration halos characteristic of porphyry systems. The deposit’s 
structural framework, comprising faults and fracture systems, further 
influences the spatial continuity and grade variability of the ore body. 

2.2. Data preparation 

The database used in this study originates from a copper deposit in 
Peru, characterized by complex mineralization and significant 
geological heterogeneity. The study area is predominantly composed of 
magnetite skarn, granodiorite, dacite porphyries, calcareous sediments, 
and volcanic units. Due to confidentiality agreements, the name of the 
deposit and any additional information that could reveal its location or 
the identity of the mining company are not disclosed. The database 
consists of 185 diamond drill holes, with an average spacing of 30 meters 
and an average depth of approximately 480 meters. Mineralization is 
distributed across five lithologies, categorized as follows: rock 1 is 
magnetite skarn, rock 2 is granodiorite, rock 3 is dacite porphyry, rock 
4 is calcareous sediments, and rock 5 is Catalina volcanic unit. To 
standardize the data and ensure consistency in subsequent analyses, drill 
hole samples were composited based on lithology, resulting in a total of 
5,654 composites (see Figure 3). 

The statistical analysis of the database determined that the average 
copper grade is 0.43%, with a variance of 0.084 and a standard deviation 
of 0.29. These values indicate low dispersion relative to the mean, 
suggesting a certain level of homogeneity in the copper grade 
distribution within the deposit. Table 1 presents the descriptive statistics 
of the database used in this study. 

 

 
Figure 2. Research methodology flowchart. 
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Figure 3. Drill hole distribution. A: copper grades. B: rock types. 

 

Table 1. Descriptive statistics of the database. 

Feature East (m) North (m) Elevation (m) Copper grade (%) Molybdenum grade (%) Rock type 
Count 5654.00 5654.00 5654.00 5654.00 5654.00 5654 
Mean 375606.25 8717015.68 4473.54 0.43 0.01 2.16 

Std dev 307.24 393.54 169.54 0.29 0.01 0.78 
Minimum 374821.06 8716003.08 4050.35 0.00 0.00 1.00 

25% 375393.42 8716738.40 4340.07 0.23 0.00 2.00 
50%  375602.29 8716995.80 4462.81 0.38 0.01 2.00 
75% 375824.99 8717271.73 4607.49 0.58 0.02 3.00 

Maximum 376414.81 8718153.15 4902.14 2.95 0.09 5.00 
Variance 94394.00 154875.00 28743.00 0.084 0.0002 0.61 

 
The grade distribution analysis reveals a positive skewness in both 

copper and molybdenum grades, indicating the presence of outliers and 
potential heterogeneity in the mineralization. Specifically, the copper 
grade ranges from a minimum (𝑌𝑚𝑖𝑛) of 0.002% to a maximum (𝑌𝑚𝑎𝑥) 
of 2.95%, with a mean of 0.43%. Similarly, the molybdenum grade varies 
between 0.00% and 0.09%, with an average of 0.01%. The histograms in 
Figure 4 highlight zones with high concentrations, contrasted with areas 
of low mineralization, emphasizing the geological variability of the 
deposit. 

2.3. Selection of variables for classification 

To estimate mineral resources, Ordinary Kriging (OK) was applied 
using SGEMS software [75, 76], with a block size of 20 x 20 x 20 meters. 
The estimation considered directional variograms of copper grade in 
three principal directions (0°, 45°, and 90°), reaching a sill value between 
150 and 200 meters. A spherical variogram was used, with a maximum 
range of 250 meters, an intermediate range of 130 meters, and a 
minimum range of 115 meters. To ensure an adequate spatial 
representation of mineralization, a search ellipsoid was defined with a 
maximum range of 450 meters, a medium range of 250 meters, and a 
minimum range of 200 meters, resulting in the estimation of a total of 
318443 blocks. Based on this estimation, six key variables were selected 
for the classification of mineral resources: 

 

1. Ordinary kriging estimated grade (OK)  
2. Average sample distance (AD) 
3. Kriging variance (VOK) 
4. Number of samples used in the estimation (NS) 
5. Geological confidence (CG) 
6. Ordinary kriging Lagrangian (LOK) 
 

Each of these variables provides essential information for classifying 
mineral resources based on uncertainty and geological continuity. 

Ordinary Kriging estimated grade (OK): The estimated mineral grade 
(Z^*) represents the interpolated concentration of copper in each block 
of the model, based on an optimal weighting of drilling data [77]. 
Ordinary Kriging minimizes the estimation error variance, producing 
optimal values for each block under the assumption of local stationarity 
[78, 79]. The estimation is defined as: 

 

𝑍∗(𝑥) = ∑ 𝜆𝑖𝑍(𝑥𝑖)
𝑛
𝑖=1                                                                                (1) 

 

Where: 𝑍∗(𝑥)  is the estimated grade at location 𝑥 ; 𝑍(𝑥𝑖)  is the 
measured grade at sample 𝑖, 𝜆𝑖 are the weights assigned by the Kriging 
system and 𝑛 is the number of samples used in the estimation. This 
variable allows for differentiating zones of high and low mineral 
concentration, making it crucial in mineral resource classification. 

Average sample distance (AD): represents the mean distance between 
the estimated block and the samples used in interpolation [80]. It is 
calculated as: 

 

𝐴𝐷 =
1

𝑛
∑ 𝑑𝑖

𝑛
𝑖=1                                                                                         (2) 

 

Where: 𝑑𝑖  is the distance between the block and sample 𝑖; 𝑛 is the 
total number of samples used in the estimation. Blocks with higher AD 
values exhibit greater uncertainty in estimation, reflecting areas with 
lower drilling data density. 

Kriging variance (VOK) (𝜎𝑘
2) quantifies the uncertainty associated 

with the estimation of each block. This variable plays a key role in 
mineral resource classification, as it provides a measure of confidence in 
the estimation [31, 41]. It is defined as: 

 

𝜎𝑘
2 = ∑ 𝜆𝑖𝛾(𝑥, 𝑥𝑖)

𝑛
𝑖=1                                                                                 (3) 

 

 

Where: 𝛾(𝑥, 𝑥𝑖) is the variogram value for the distance between block 
location 𝑥  and sample 𝑥𝑖 . A high VOK value indicates greater 
uncertainty, suggesting that the interpolation is influenced by distant or 
scarce data. 
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Figure 4. Grade distribution histograms. Up: copper grade. Down: Molybdenum 
grade. 

 

Number of samples used in the estimation (NS): represents the total 
count of drilling data used in the estimation of each block [81]. It is 
expressed as: 

 

𝑁𝑆 = ∑ 1𝑛
𝑖=1                                                                                              (4) 

 

A higher NS value implies greater confidence in the estimation, 
whereas low NS values indicate data-sparse zones, leading to higher 
uncertainty. 

Geological confidence (CG): This index integrates information on 
spatial continuity and data quality [82]. It is calculated as: 

∑ 𝜆𝑖
𝑛
𝑖=1 = 1 + 𝜇                                                                                          (5) 

 

Where 𝜇  is the Lagrange parameter. Higher 𝜇  values may indicate 
regions of high geological variability, whereas lower values suggest 
greater stability in interpolation. 

Table 2 presents the statistical summary of the key variables utilized 
in the mineral resource classification process. The average estimated 
grade (OK) is 0.34%, while the kriging variance (KV) is 0.07. The average 
sample distance (AD) is 231.91 m, and the number of samples (NS) used 

in the estimation has a mean value of 124. Additionally, the geological 
confidence (CG) is 0.15, indicating the variability in estimation 
confidence. A 3D graphical representation of these variables is presented 
in Figure 5. 

2.4. Multivariable mixed clustering using K-Prototypes 

The classification of mineral resources requires the segmentation of 
blocks based on multiple variables, including both numerical and 
categorical characteristics. To address this issue, a multivariable mixed 
clustering model based on the K-Prototypes algorithm [74] was 
implemented. This method allows the simultaneous handling of 
continuous and discrete data, making it well-suited for mineral resource 
classification. A clustering scheme with three clusters (k=3) was 
established, determined by the data structure and the geological 
coherence of the deposit. To improve model convergence, the Huang 
initialization method was used, a widely validated approach in clustering 
problems involving mixed data types. The K-Prototypes algorithm 
extends the logic of K-Means [83] and K-Modes [84], enabling the 
segmentation of databases that contain both numerical and categorical 
variables. Given a mixed database 𝑋, consisting of a subset of numerical 
variables 𝑋𝑛 and a subset of categorical variables 𝑋𝑐 , the objective of the 
model is to minimize the following cost function: 

 

𝐽 = ∑ ∑ 𝛿(𝑥𝑖 , 𝑐𝑗)𝑘
𝑗=1

𝑛
𝑖=1                                                                             (6) 

 

Where 𝑥𝑖  represents an observation in the database and 𝑐𝑗  e is the 
centroid of the assigned cluster. 

The total distance between a given sample  𝑥𝑖 and its assigned cluster 
centroid 𝑐𝑗 is composed of two terms: 

 

𝑑(𝑥𝑖 , 𝑐𝑗) = 𝑑𝑛(𝑥𝑖 , 𝑐𝑗) + 𝛾𝑑𝑐(𝑥𝑖 , 𝑐𝑗)                                                          (7) 
 

Where 𝑑𝑛(𝑥𝑖, 𝑐𝑗)  represents the Euclidean distance between the 
numerical variables and 𝑑𝑐(𝑥𝑖 , 𝑐𝑗) measures the dissimilarity between 
categorical variables. For numerical variables, the distance is computed 
as the squared Euclidean norm between the observation and the 
centroid of the cluster: 

 

𝑑𝑛(𝑥𝑖 , 𝑐𝑗) = ‖𝑥𝑖 − 𝑐𝑗‖
2
                                                                                  (8) 

 

For categorical variables, the matching distance is used, which counts 
the number of attributes that differ between an observation and its 
assigned cluster: 

 

𝑑𝑐(𝑥𝑖 , 𝑐𝑗) = ∑ 𝐼(𝑥𝑖𝑙
𝑚
𝑙=1 ≠ 𝑐𝑗𝑙)                                                                  (9) 

 

Where 𝐼(𝑥𝑖𝑙 ≠ 𝑐𝑗𝑙) is an indicator function that takes a value of 1 if the 
categorical attributes are different and 0 otherwise. The 𝛾 parameter in 
the equation regulates the influence of categorical variables in the 
clustering process. A higher 𝛾  value increases the importance of 
categorical dissimilarity, while lower values prioritize Euclidean 
distance for numerical features, allowing a more balanced segmentation 
based on both data types. 

The K-Prototypes model was implemented using the kmodes library 
[84], which allows clustering techniques to be applied to mixed data 
types. Parallel processing was enabled with four execution cores (𝑛𝑗𝑜𝑏𝑠 =

4), optimizing the calculation speed and improving cluster assignment 
efficiency. To ensure result reproducibility, a random state of 17,276,365 
was set. The full hyperparameter configuration of the K-Prototypes 
clustering model is detailed in Table 3. 

 
Table 2. Statistical summary of variables used for mineral resource classification. 

Feature OK AD VOK NS LKO CG 
Count 318,443.0 318,443.0 318,443.0 318,443.0 318,443.0 318,443.0 
Mean 0.34 231.91 0.07 124 -0.01 0.15 

Std dev 0.15 59.19 0.03 70 0.01 0.36 
Minimum 0.00 114.27 0.00 10 -0.06 0.00 

25% 0.26 189.35 0.05 54 -0.01 0.00 
50%  0.33 224.66 0.08 131 -0.00 0.00 
75% 0.42 269.69 0.09 200 -0.00 0.00 

Maximum 2.21 433.19 0.15 200 0.00 1.00 
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Figure 5. Key variables for mineral resource classification. A: Block model with ordinary kriging estimation. B: Ordinary kriging Lagrangian. C: Average composite distance. 
D: Ordinary kriging variance. E: Number of composites. F: Geological confidence. 

 

 

Table 3. Hyperparameters of the K-Prototypes clustering model. 

Model Description Value 

K-Prototypes 

n_clusters 3 

init “Huang” 

n_jobs 4 

random_state 17,276,365 

categorical  [3] 

2.5. Block smoothing using an artificial neural network 

The block smoothing process was conducted using a Multilayer 
Perceptron Artificial Neural Network (MLP-ANN) [85–87] to mitigate 
the spatial variability introduced by block-by-block classification and 
enhance the geological coherence in the mineral resource classification. 
The neural network was implemented using the TensorFlow/Keras 
library [88], which facilitated model optimization. 

The implemented MLP model consists of a two-layer architecture 
with 64 and 32 neurons, respectively, followed by an output layer 
responsible for generating the smoothed block classification. The ReLU 

(Rectified Linear Unit) activation function was selected for the hidden 
layers due to its ability to accelerate training convergence and mitigate 
the vanishing gradient problem. The ReLU function is defined as 
follows: 

 

𝑓(𝑥) = max (0, 𝑥)                                                                                   (10) 
 

 

Where x represents the neuron’s pre-activation output. This function 
truncates negative values to zero, while positive values remain 
unchanged. Each layer in the neural network is mathematically modeled 
using the following equation: 

 

ℎ(𝑙) = 𝑓(𝑊(𝑙)ℎ(𝑙−1) + 𝑏(𝑙))                                                                         (11) 
 

Where ℎ(𝑙)  represents the output of layer 𝑙 , 𝑊(𝑙)  is the synaptic 
weight matrix, 𝑏(𝑙)  is the bias term, and 𝑓(. )  is the element-wise 
activation function. To prevent overfitting, a 10% dropout was 
incorporated. The hyperparameter configurations for the implemented 
MLP-ANN models are detailed in Table 4. As shown in Figure 6, the 
model was trained under four different configurations, each using a 
different optimizer to evaluate its accuracy in mineral resource  
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Table 4. Hyperparameters of the ANN configuration. 

Model Description Conf. 1 Conf. 2 Conf. 3 Conf. 4 

Multilayer perceptron 
(ANNs-MLP) 

Hidden layers 2 2 2 2 
Neurons per layer 64, 32 64, 32 64, 32 64, 32 

Activation function ReLU ReLU ReLU ReLU 
Optimizer Adam RMSprop SGD Adagrad 

Learning rate 0.001 0.001 0.001 0.001 
Batch size 32 32 32 32 

Epochs 50 50 50 50 
Dropout 0.1 0.1 0.1 0.1 

 
 

classification. The graphical representation of the artificial neural 
network architecture is presented in Figure 6. 

Adam (adaptive moment estimation): Adam is an optimization 
method that combines the first and second moment estimates of the 
gradient, allowing for adaptive parameter updates with independent 
learning rates [89]. The weight update process follows the equations: 

 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡                                                                    (12) 
 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2                                                                   (13) 

 

𝜃𝑡 = 𝜃𝑡−1 −
𝛼

√𝑣𝑡+∈
𝑚𝑡                                                                           (14) 

 

Where 𝑚𝑡 and 𝑣𝑡 are the first and second moment estimates of the 
gradient, 𝜃𝑡 represents the updated weights, 𝛼 is the learning rate, and 
𝛽1, 𝛽2 are decay rates. The variable 𝑔𝑡  represents the gradient at time 
step t, and the variable ∈ is a very small constant used to avoid division 
by zero during the optimization process. 

RMSprop (root mean square propagation): This optimizer adjusts the 
magnitude of weight updates by normalizing the gradient using a 
moving average of squared gradients [90]. It is defined as: 

 

𝜃𝑡 = 𝜃𝑡−1 −
𝛼

√𝑣𝑡+∈
𝑔𝑡                                                                                (15) 

 

RMSprop improves the stability of optimization when dealing with 
data of high variability. 

SGD (stochastic gradient descent): SGD is a classical gradient descent 
algorithm, which updates weights at every iteration based on the 
computed gradient. However, it is highly sensitive to the learning rate 
and can oscillate in complex optimization landscapes [91]. The update 
rule is: 

 

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝑔𝑡                                                                                   (16) 
 

Adagrad (Adaptive gradient algorithm): Adagrad modifies the 
learning rate for each parameter independently, adapting to the scale of 
past gradients. This allows better handling of sparse data without 
requiring manual learning rate tuning [92]. The weight update formula 
is: 

𝜃𝑡 = 𝜃𝑡−1 −
𝛼

√∑ 𝑔𝑖
2𝑡

𝑖=1 +∈

𝑔𝑡                                                                           (17) 

 

In all configurations, the learning rate was set to 0.001, with a batch 
size of 32 and a total of 50 epochs, ensuring training stability. 

The evaluation of the artificial neural network model was conducted 
using classification metrics, including precision, recall, F1-score, and 
accuracy. These metrics assess the model’s performance in correctly 
classifying blocks within the defined categories. Precision measures the 
proportion of correctly categorized blocks within a class relative to all 
blocks classified in that category: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                  (18) 

 

Where 𝑇𝑃 represents the true positives and 𝐹𝑃 the false positives. 
Recall evaluates the model’s ability to correctly identify blocks 

belonging to a specific category. To obtain a balanced measure between 
precision and recall, the F1-score is used, which combines both metrics 
into a single expression. This metric is particularly useful when assessing 
model performance in scenarios where class distribution is imbalanced 
[93, 94]. Finally, accuracy measures the total proportion of correctly 

classified blocks over the total number of evaluated blocks. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                        (19) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                         (20) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                       (21) 

 

Where 𝐹𝑁  represents false negatives. A high recall value indicates 
that the neural network successfully classifies most blocks that 
genuinely belong to a given class. TN represents true negatives. This 
metric provides an overall assessment of the model’s performance, 
though it may be less representative in cases where class distributions 
are highly imbalanced. 

 

 
Figure 6. Architecture of the ANN with the optimizers used. 

3. Results 

3.1. Block by block mixed multivariable clustering using the k-
prototypes algorithm 

The classification of mineral resources was performed using the K-
Prototypes algorithm applied to multiple 2D cross-sections of the block 
model. The results reveal three main categories, including Measured, 
Indicated, and Inferred each corresponding to varying degrees of 
geological confidence. As illustrated in Figure 7, the spatial distribution 
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Figure 7. Classification of mineral resources using k-prototypes in different 2D sections. 

 
of these classes demonstrates strong geological coherence: Measured 
resources (red) are tightly clustered around drill holes (black dots), 
Indicated resources (green) extend into areas with higher data density, 
and Inferred resources (blue) occupy the peripheries of the mineralized 
domain. The color gradients between classes reflect the enhanced spatial 
continuity and reduced fragmentation achieved through neural network 
smoothing. 

This result is consistent with previous studies, which highlight that 
drill hole density and geological continuity are key factors in mineral 
resource classification [25, 27]. 

The clustering performance analysis, summarized in Table 5, 
indicates that the model achieves an adequate separation between 
clusters. The Silhouette Score of 0.3496 suggests an acceptable 
segmentation with some overlap between categories, while the Davies-
Bouldin Index (0.9560) confirms a good separation between groups. 
Lastly, the Calinski-Harabasz Score (162,313) indicates a well-defined 
structure, with compact and well-separated clusters, supporting the 
effectiveness of the method in mineral resource classification. It is noted 
that some category overlap is expected due to the inherent variability in 
block classification [14]. 

 

Table 5. Clustering performance metrics using k-prototypes. 

Metric Value 

Silhouette score 0.3496 

Davies-Bouldin index 0.9560 

Calinski-Harabasz Score 162,313 

3.2. Block smoothing using a multilayer artificial neural network 

To evaluate the effect of neural smoothing on resource estimation, 
the classification results obtained using the Adam optimizer were 
analyzed. This method provides a stable and precise adjustment of class 
boundaries, reducing abrupt transitions and improving spatial 
continuity across the model. As shown in Figure 8, the comparison 
before and after smoothing reveals a marked reduction in 
fragmentation, with more coherent transitions between Measured, 
Indicated, and Inferred categories. The Adam optimizer demonstrates 
an effective balance between convergence speed and classification 
stability, minimizing estimation noise without compromising accuracy. 

The quantitative results, summarized in Table 6, indicate a precision 
score of 96% for Measured resources, 91% for Indicated resources, and 
89% for Inferred resources, with an overall accuracy of 93%. The high 
F1-scores across all categories suggests that the model trained with 
Adam provides a reliable and geologically coherent classification. These 
findings are consistent with Desai [71], who demonstrated that Adam 
provides more stable convergence in machine learning applications due 
to its ability to dynamically adjust adaptive learning rates. 

 

Table 6. Accuracy of the Adam optimizer in ANN for mineral resource 
classification. 

Resources Precision Recall F1-Score 

Measured 0.96 0.97 0.97 

Indicated 0.91 0.89 0.90 

Inferred 0.89 0.91 0.90 

Accuracy   0.93 

 

The classification performance of the RMSprop optimizer was also 
assessed to analyze its behavior in the context of neural network 
smoothing. This method enhances the internal cohesion of classified 
blocks, although certain discontinuities remain evident at the 
boundaries between resource categories. As illustrated in Figure 9, the 
comparison between pre- and post-smoothing results shows improved 
consistency within classes, yet some segmentation persists likely due to 
RMSprop's sensitivity to data with high variability, as previously noted 
by Hassan et al. [72]. 

The results presented in Table 7indicate a precision of 96% for 
Measured resources, 92% for Indicated resources, and 87% for Inferred 
resources, with an overall accuracy of 92%. 

 
Table 7. Accuracy of the RMSprop optimizer in ANN for mineral resource 
classification. 

Resources Precision Recall F1-Score 

Measured 0.96 0.96 0.96 

Indicated 0.92 0.86 0.89 

Inferred 0.87 0.92 0.89 

Accuracy   0.92 
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Figure 8. 2D visualization of mineral resource classification using the Adam optimizer in ANN. Left: classification without smoothing. Right: smoothed classification. 

 

 
Figure 1. 2D visualization of mineral resource classification using the RMSprop optimizer in ANN. Left: classification without smoothing. Right: smoothed classification. 

 
The application of the SGD optimizer to resource classification 

reveals limitations in smoothing performance, particularly in terms of 
spatial fragmentation. Compared to Adam and RMSprop, SGD exhibits 
slower convergence and greater sensitivity to hyperparameter settings. 
As evidenced in Figure 10, the resulting classification after smoothing 
shows higher levels of fragmentation, indicating that additional 
calibration is necessary to achieve coherent transitions between 
resource categories. 

According to the results in Table 8, the precision reaches 96% for 
Measured resources, 91% for Indicated resources, and 89% for Inferred 
resources, with an overall accuracy of 92%. These findings align with 
those reported by Battalgazy et al. [14], who noted that the performance 
of SGD heavily depends on accurate hyperparameter calibration, 
particularly on the learning rate. 

Figure 11 presents smoothing results using the Adagrad optimizer, 

highlighting its lower homogenization capability compared to other 
optimizers. Discontinuities are observed in the smoothed classification, 
particularly in the transition between Indicated and Inferred resource 
blocks, which may be attributed to Adagrad’s adaptive learning rate 
strategy. While this strategy makes it suitable for sparse or highly 
heterogeneous data, in this case its limited ability to homogenize 
classified blocks exposes its constraints [22]. 

 

Table 8. Accuracy of the SGD optimizer in ANN for mineral resource 
classification. 

Resources Precision Recall F1-Score 

Measured 0.96 0.96 0.96 

Indicated 0.91 0.90 0.90 

Inferred 0.89 0.90 0.90 

Accuracy   0.92 
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Figure 10. 2D visualization of mineral resource classification using the SGD optimizer in ANN. Left: classification without smoothing. Right: smoothed classification. 
 

 
Figure 11. 2D visualization of mineral resource classification using the Adagrad optimizer in ANN. Left: classification without smoothing. Right: smoothed classification. 

 
The values in Table 9 indicate a precision of 94% for Measured 

resources, 89% for Indicated resources, and 85% for Inferred resources, 
with an overall accuracy of 90%. 

3.3. Optimizer comparison 

Figure 12 presents the confusion matrices obtained for mineral 
resource classification using different optimizers in the artificial neural 
network (ANN). The Adam optimizer (A) exhibited the best 
classification distribution with the fewest prediction errors between 
categories, followed by RMSprop (B), which maintained high precision 
but showed slightly increased confusion between Indicated and Inferred 
resources. In contrast, SGD (C) and Adagrad (D) resulted in higher 
classification dispersion, indicating a lower generalization capacity of 

the model in these cases. 
Table 11 quantifies the overall performance of each optimizer in terms 

of classification accuracy. The Adam optimizer achieved the highest 
accuracy (93%), followed by RMSprop and SGD (92%), while Adagrad 
obtained the lowest accuracy (90%), demonstrating its lower 
effectiveness in mineral resource classification. These findings align with 
studies emphasizing Adam’s superiority in complex classification 
applications [71, 73]. Figure 13 compares 2D block classification results 
obtained through K-Prototypes clustering (A) before smoothing and 
after applying different ANN optimizers (B, C, D, and E for Adam, 
RMSprop, SGD, and Adagrad, respectively). It is evident that Adam and 
RMSprop produce a more coherent spatial distribution, while SGD and 
Adagrad result in greater spatial fragmentation, reflecting lower 
classification stability. 
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Table 10. Computational cost in mineral resource classification 

Optimizer Epochs completed Time (seconds) 

Adam 48/50 490 

RMSprop 47/50 534 

SGD 45/50 485 

Adagrad 47/50 550 

Table 11: Accuracy comparison in mineral resource classification. 

Metric Accuracy 

ANN-Adam 0.93 

ANN-RMSprop 0.92 

ANN-SGD 0.92 

ANN-Adagrad 0.90 

 

 
Figure 12. Confusion matrix for mineral resource classification using ANN. A: Adam optimizer. B: RMSprop optimizer. C: SGD optimizer. D: Adagrad optimizer. 

 
Figure 13. 2D visualization of mineral resource block classification. A: K-Prototypes classification without smoothing. B: Smoothed classification with Adam optimizer. C: 
Smoothed classification with RMSprop optimizer. D: Smoothed classification with SGD optimizer. E: Smoothed classification with Adagrad optimizer. 
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Figure 14 presents the box plots of the study variables for mineral 
resource classification using different optimizers. These visualizations 
illustrate the distribution and variability of key parameters across the 
Adam, RMSprop, SGD, and Adagrad optimizers. 

Figures 15, 16, and 17 depict the tonnage vs. mean copper grade 
relationships for Measured, Indicated, and Inferred resources, 
respectively. In general, the Adam and RMSprop optimizers exhibit a 
more stable trend compared to SGD and Adagrad, indicating greater 
reliability in mineral resource estimation. A progressive decrease in 
mean grade is observed as tonnage increases, which is an expected trend 
in mineral resource classification. The classification of mineral resource 
blocks exhibits notable differences among the evaluated optimizers. The  
 
 

SGD optimizer produced the highest number of measured resource 
blocks (76,842 blocks), whereas RMSprop yielded the lowest (72,643 
blocks). Conversely, in the indicated resource category, RMSprop 
classified the highest number of blocks (123,858), while SGD had the 
fewest (119,859). In the inferred resource category, the results were more 
consistent across all optimizers, ranging between 121,742 and 123,169 
blocks, with Adagrad reporting the highest. These findings suggest that 
models trained with Adam and SGD tend to classify a larger number of 
measured blocks, likely due to their parameter adjustment and 
regularization capabilities. This aligns with Cevik et al. [25], who 
emphasized that model performance strongly depends on the 
optimizer’s parameters and the density of available data (see Table 12). 

 

 
Figure 14. Box plot of study variables for mineral resource classification using different optimizers. 

 

 
Figure 15. Tonnage–mean grade curves for measured resources. A: Adam. B: RMSprop. C: SGD. D: Adagrad. 
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Figure 16. Tonnage–mean grade curves for indicated resources. A: Adam. B: RMSprop. C: SGD. D: Adagrad. 

 

 
Figure 17. Tonnage–mean grade curves for inferred resources. A: Adam. B: RMSprop. C: SGD. D: Adagrad. 

 

Table 12. Comparison of the number of blocks classified across mineral resource categories 

Resource ANN-Adam ANN-RMSprop ANN-SGD ANN-ADAgrad 

Measured 75,869.00 72,643.00 76,842.00 73,198.00 

Indicated 120,039.00 123,858.00 119,859.00 122,076.00 

Inferred 122,535.00 121,942.00 121,742.00 123,169.00 

 
The total tonnage estimation also differs among optimizers. Models 

trained with Adam and SGD produced the highest tonnage values in the 
measured resource category, at 1,395.99 Mt and 1,413.89 Mt, respectively. 
Conversely, RMSprop and Adagrad reported lower values, at 1,336.63 
Mt and 1,346.84 Mt, respectively. In the indicated resource category, 
RMSprop generated the highest total tonnage (2,278.99 Mt), while SGD 
produced the lowest (2,205.41 Mt). For inferred resources, the estimates 

were more homogeneous across optimizers, with differences of 
approximately 26 Mt, with Adagrad having the highest estimation 
(2,266.31 Mt) and SGD the lowest (2,240.05 Mt). These variations 
highlight the optimizer's influence on total tonnage estimation and 
resource classification (see Table 13). The fine copper tonnage analysis 
further underscores optimizer-specific variations. SGD and Adam 
yielded the highest estimates for measured resources, at 5.47 Mt and 5.40 
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Mt, respectively, whereas RMSprop and Adagrad recorded lower values, 
at 5.17 Mt and 5.33 Mt, respectively. In the indicated resource category, 
RMSprop (6.77 Mt) and Adagrad (6.67 Mt) achieved the highest fine 
copper estimates, while SGD and Adam provided similar values (6.55 
Mt and 6.56 Mt, respectively). In the inferred resource category, the 
differences between optimizers were marginal, ranging from 6.25 Mt to 
6.32 Mt, with Adagrad producing the highest estimate. These findings  
 

indicate that SGD and Adam tend to yield higher fine copper tonnage 
for measured resources, whereas RMSprop and Adagrad favor higher 
values for indicated and inferred resources (see Table 14). 

These variations highlight the impact of optimizer selection on model 
stability and resource estimation accuracy [14, 46]. Furthermore, Adam 
and RMSprop exhibit more stable trends, aligning with the classification 
accuracy and consistency criteria established by Rossi et al. [55]. 

 

Table 13. Comparison of total tonnage across mineral resource categories. 

Resource ANN-Adam (Mt) ANN-RMSprop (Mt) ANN-SGD (Mt) ANN-ADAgrad (Mt) 

Measured 1395.99 1336.63 1413.89 1346.84 

Indicated 2208.72 2278.99 2205.41 2246.20 

Inferred 2254.64 2243.73 2240.05 2266.31 
 

Table 14. Comparison of fine copper tonnage across mineral resource categories. 

Resource ANN-Adam (Mt) ANN-RMSprop (Mt) ANN-SGD (Mt) ANN-ADAgrad (Mt) 

Measured 5.40 5.17 5.47 5.33 

Indicated 6.56 6.77 6.55 6.67 

Inferred 6.29 6.26 6.25 6.32 

 

4. Conclusions 

The objective of this study was to evaluate the accuracy of different 
optimizers in mineral resource classification using a multilayer artificial 
neural network (MLP-ANN), with a particular focus on block 
smoothing and on reducing spatial fragmentation. The results 
demonstrated that the Adam optimizer achieved the highest overall 
accuracy, at 93%, outperforming RMSprop and SGD (92%) and 
Adagrad (90%). Additionally, Adam improved spatial continuity in the 
classification, particularly in measured resources, where it classified 
75869 blocks with a total tonnage of 1395.99 Mt and a fine copper 
tonnage of 5.40 Mt. These findings highlight the effectiveness of Adam 
in complex geological applications, providing a more reliable and 
geologically consistent classification aligned with the characteristics of 
the deposit. The analysis of other optimizers revealed that RMSprop 
yielded a higher estimate for indicated resources, with a total tonnage of 
2278.99 Mt and a fine copper tonnage of 6.77 Mt, while SGD exhibited 
strong performance in measured resources, reporting the highest fine 
copper tonnage (5.47 Mt). Adagrad, despite having the lowest overall 
accuracy, resulted in the highest estimation for inferred resources, 
classifying 123169 blocks with a total tonnage of 2266.31 Mt and a fine 
copper tonnage of 6.32 Mt. These variations emphasize how optimizer 
selection influences mineral resource estimation and classification, 
providing valuable insights for strategic mine planning. 

Among the limitations of this study are the dependency on database 
characteristics, such as drill hole density and geological heterogeneity, 
which suggests the need to validate these results in other deposits under 
different conditions. An important identified limitation in the 
application of artificial neural networks is their high computational cost, 
especially which is relevant in contexts with hardware limitations or 
large-scale databases. Future research could explore dynamic 
hyperparameter optimization during model training, integrating hybrid 
approaches that combine neural networks with traditional geostatistical 
methods. Additionally, the implementation of advanced deep learning 
techniques, such as convolutional neural networks or attention-based 
models, could further enhance classification accuracy and model 
stability in mineral resource estimation. 

References 

[1]  Coates, D. (1985). Mineral resources. In Geology and Society, 
19–46. 

[2]  Dubiński, J. (2013). Sustainable Development of Mining 
Mineral Resources. Journal of Sustainable Mining, 12(1), 1-6. 
doi:https://doi.org/10.7424/jsm130102. 

 
 
 

[3]  Ericsson, M., Löf, O. (2019). Mining’s contribution to national 
economies between 1996 and 2016. Mineral Economics, 32, 223-
250. doi:https://doi.org/10.1007/s13563-019-00191-6. 

[4]  Van Gosen, B., Verplanck, P., Long, K., Gambogi, J., Seal, R. 
(2014). The Rare-Earth Elements: Vital to Modern Technologies 
and Lifestyles. US Geological Survey: Reston, VA, USA. 

[5]  Henckens, MLCM., Biermann, FHB., Driessen, PPJ. (2019). 
Mineral resources governance: A call for the establishment of an 
International Competence Center on Mineral Resources 
Management. Resour Conserv Recycl, 141, 255-263. 
doi:https://doi.org/10.1016/j.resconrec.2018.10.033. 

[6]  Crowson, PCF. (2011). Mineral reserves and future minerals 
availability. Mineral Economics, 24, 1-6. 
doi:https://doi.org/10.1007/s13563-011-0002-9. 

[7]  Zerzour, O., Gadri, L., Hadji, R., Mebrouk, F., Hamed, Y. (2021). 
Geostatistics-Based Method for Irregular Mineral Resource 
Estimation, in Ouenza Iron Mine, Northeastern Algeria. 
Geotechnical and Geological Engineering, 39, 3337-3346. 
doi:https://doi.org/10.1007/s10706-021-01695-1. 

[8]  Hartman, HL., Mutmansky, JM. (2002). Introductory mining 
engineering. Introductory Mining Engineering. 

[9]  CIM. (2019). Estimation of mineral resources & mineral reserves 
best practice guidelines. Canadian Institute of Mining. 

[10]  JORC Code. (2012). Australasian code for reporting of 
exploration results, mineral resources and ore reserves. 
AusIMM 44. 

[11] SAMREC. (2016). The South African code for the reporting of 
exploration results, mineral resources and mineral reserves (the 
SAMREC Code. South African Mineral Resource Committee. 

[12]  Goodfellow, RC., Dimitrakopoulos, R. (2016). Global 
optimization of open pit mining complexes with uncertainty. 
Applied Soft Computing Journal, 40, 292-304. doi:https:// 
doi.org/10.1016/j.asoc.2015.11.038. 

[13]  Menin, R., Diedrich, C., Reuwsaat, JD., De Paula, WF. (2017). 
Drilling Grid Analysis for Defining Open-Pit and Underground 
Mineral Resource Classification through Production Data. 
Geostatistics Valencia 2016, 271-285. doi:https://doi.org/ 
10.1007/978-3-319-46819-8_18. 



 M. A. C.-Teatino et al.,  / Int. J. Min. & Geo-Eng. (IJMGE), 59-3 (2025) 281-297191-199 295 

 

[14]  Battalgazy, N., Madani, N. (2019). Categorization of mineral 
resources based on different geostatistical simulation 
algorithms: a case study from an iron ore deposit. Nat Resour 
Res, 28:1329–1351. doi:https://doi.org/10.1007/s11053-019-09474-
9. 

[15]  Afzal, P., Gholami, H., Madani, N., Yasrebi, A., Sadeghi, B. 
(2023). Mineral Resource Classification Using Geostatistical 
and Fractal Simulation in the Masjed Daghi Cu–Mo Porphyry 
Deposit, NW Iran. Minerals, 13(3), 370. 
doi:https://doi.org/10.3390/min13030370. 

[16]  Guardiano, E., Parker, H., Isaaks, E. (1995). Prediction of 
Recoverable Reserves Using Conditional Simulation: A Case 
Study for the Fort Knox Gold Project, Alaska. Unpublished 
Technical Report; Mineral Resource Development Inc.: Port 
Moresby, Papua New Guinea. 

[17]  Kingston, G. (1977). Reserve classification of identified nonfuel 
mineral resources by the bureau of mines minerals availability 
system. Journal of the International Association for 
Mathematical Geology, 9, 273–279. doi:https://doi.org/ 
10.1007/BF02272389. 

[18]  Dimitrakopoulos, R., Chou, C., Godoy, M. (2008). Resource / 
Reserve Classification with Integrated Geometric and Local 
Grade Variability Measures. Cosmo 08. 

[19]  Asghari, O., Esfahani, NM. (2014). Erratum to: A new approach 
for the geological risk evaluation of coal resources through a 
geostatistical simulation. Arabian Journal of Geosciences, 7, 839. 
doi:https://doi.org/10.1007/s12517-013-1262-1. 

[20]  Peattie, R., Dimitrakopoulos, R. (2013). Forecasting Recoverable 
Ore Reserves and Their Uncertainty at Morila Gold Deposit, 
Mali: An Efficient Simulation Approach and Future Grade 
Control Drilling. Math Geosci, 45, 1005-1020. doi:https:// 
doi.org/10.1007/s11004-013-9478-x. 

[21]  Tajvidi, E., Monjezi, M., Asghari, O., Emery, X., Foroughi, S. 
(2015). Application of joint conditional simulation to 
uncertainty quantification and resource classification. Arabian 
Journal of Geosciences, 8, 455-463. doi:https://doi.org/ 
10.1007/s12517-013-1133-9. 

[22]  Deustch, C., Leaungthong, O., Ortiz, J. (2007). Case for 
geometric criteria in resources and reserves classifcation. Trans 
Soc Min Metall Explor 322. 

[23]  Dominy, S., Stephenson, P., Annels, A. (2001). Classification and 
reporting of mineral resources for high-nugget effect gold vein 
deposits. Exploration and Mining Geology, 10, 215–233. 

[24]  Dohm, C. (2005). Quantifiable Mineral Resource Classification: 
A Logical Approach. Geostatistics Banff 2004, 333-342. 
doi:https://doi.org/10.1007/978-1-4020-3610-1_34. 

[25] Cevik, IS., Leuangthong, O., Caté, A., Ortiz, JM. (2021). On the 
Use of Machine Learning for Mineral Resource Classification. 
Min Metall Explor, 38, 2055-2073. doi:https://doi.org/ 
10.1007/s42461-021-00478-9. 

[26] Stephenson, P., Stoker, P. (2001). Mineral resource and ore 
reserve estimation - the AusIMM guide to good practice 
(monograph 23). Miner Eng, 14(9). doi:https://doi.org/ 
10.1016/s0892-6875(01)80033-9. 

[27]  Owusu, S. (2019). Critical Review of Mineral Resource 
Classification Techniques in the Gold Mining Industry. Insights 
in Mining Science & Technology, 1(3), 555564. 
doi:https://doi.org/10.19080/imst.2019.01.555564. 

[28]  Machuca-Mory, D., Deutsch, C. (2006). A Program for Robust 
Calculation of Drillhole Spacing in Three Dimensions. 

[29]  Delaunay, B. (1934). Sur la sphere vide. Bulletin de l’Académie 
des Sciences de l’URSS 6. 

[30]  Wilde, B., Deutsch, C V. (2010). Data spacing and uncertainty: 
Quantification and complications. IAMG 2010 Budapest - 14th 
Annual Conference of the International Association for 
Mathematical Geosciences. 

[31]  Emery, X., Ortiz, JM., Rodríguez, JJ. (2006). Quantifying 
uncertainty in mineral resources by use of classification schemes 
and conditional simulations. Math Geol, 38, 445-464. 
doi:https://doi.org/10.1007/s11004-005-9021-9. 

[32] Mucha, J., Wasilewska-Błaszczyk, M., Augus ̈cik, J. (2015). 
Categorization of mineral resources based upon geostatistical 
estimation of the continuity of changes of resource parameters. 
Proceedings of IAMG 2015 - 17th Annual Conference of the 
International Association for Mathematical Geosciences. 

[33] Taghvaeenezhad, M., Shayestehfar, M., Moarefvand, P., Rezaei, 
A. (2020). Quantifying the criteria for classification of mineral 
resources and reserves through the estimation of block model 
uncertainty using geostatistical methods: a case study of 
Khoshoumi Uranium deposit in Yazd, Iran. Geosystem 
Engineering, 23(4), 216-225. doi:https://doi.org/ 
10.1080/12269328.2020.1748524. 

[34] Nowak, M., Leuangthong, O. (2019). Optimal drill hole spacing 
for resource classification. Mining Goes Digital - Proceedings of 
the 39th international symposium on Application of Computers 
and Operations Research in the Mineral Industry, APCOM 
2019. doi:https://doi.org/10.1201/9780429320774-14. 

[35] Journel, AG. (1983). Nonparametric estimation of spatial 
distributions. Journal of the International Association for 
Mathematical Geology, 15, 445-468. doi:https://doi.org/ 
10.1007/BF01031292. 

[36] Jelvez, E., Ortiz, J., Morales, N., Askari, H., Nelis, G. (2023). A 
Multi-Satage Methodology for Long-Term Open-Pit Mine 
Production Planning under Ore Grade Uncertainty. 
Mathematics, 11(18). 

[37] Ribeiro, DT., Filho, CGM., de Souza, LE., Costa, JFCL., de 
Almeida D del PM. (2012). Utilização de critérios geoestatísticos 
para comparação de malha de sondagem visando à maximização 
da quantidade de recursos. Revista Escola de Minas, 65(1). 
doi:https://doi.org/10.1590/S0370-44672012000100016. 

[38] Madani, N. (2020). Mineral resource classification based on 
uncertainty measures in geological domains. Springer Series in 
Geomechanics and Geoengineering, 157-164. 
doi:https://doi.org/10.1007/978-3-030-33954-8_19. 

[39] Wawruch, TM., Betzhold, JF. (2005). Mineral Resource 
Classification Through Conditional Simulation. Geostatistics 
Banff 2004, 479-489. doi:https://doi.org/10.1007/978-1-4020-
3610-1_48. 

[40] Isatelle, F., Rivoirard, J. (2019). Mineral Resources classification 
of a nickel laterite deposit: Comparison between conditional 
simulations and specific areas. J South Afr Inst Min Metall, 
119(10). doi:https://doi.org/10.17159/2411-9717/660/2019. 

[41] Silva, DSF., Boisvert, JB. (2014). Mineral resource classification: 
A comparison of new and existing techniques. J South Afr Inst 
Min Metall 114. 

[42] Arik, A. (2002). Comparison of resource classification 
methodologies with a new approach. 30th International 
Symposium on the Application of Computers and Operations 
Research in the Mineral Industry. 

[43] Abzalov, M. (2016). Methodology of the mineral resource 



296 M. A. C.-Teatino et al.,  / Int. J. Min. & Geo-Eng. (IJMGE), 59-3 (2025) 281-297191-199 

 

classification. Modern Approaches in Solid Earth Sciences, 355-
363. doi:https://doi.org/10.1007/978-3-319-39264-6_28. 

[44] Caers, J. (2011). Modeling Uncertainty in the Earth Sciences. 
Modeling Uncertainty in the Earth Sciences. 
doi:https://doi.org/10.1002/9781119995920. 

[45] Pyrcz, M., Deutsch, C. (2014). Geostatistical Reservoir Modeling 
(2nd Edition). Oxford University Press. 

[46] Hernández, H. (2024). A semiautomatic multi criteria method 
for mineral resources classification. Applied Earth Science: 
Transactions of the Institutions of Mining and Metallurgy, 133, 
211–223 

[47] Zuo, M., Wang, T. (2021). Research on reserve classification of 
solid mineral resources in China and western countries. IOP 
Conf Ser Earth Environ Sci, 631. doi:https://doi.org/10.1088/1755-
1315/631/1/012044. 

[48] Duggan, S., Grills, A., Stiefenhofer, J., Thurston, M. (2017). 
Development of a best-practice mineral resource classification 
system for the de Beers group of companies. J South Afr Inst 
Min Metall, 117(12). doi:https://doi.org/10.17159/2411-
9717/2017/v117n12a6. 

[49] Mohanlal, K., Stevenson, P. (2010). Anglo American Platinum’s 
approach to resource classification case study—
Boschkoppie/Styldrift minewide UG2 project. The 4th 
International Platinum Conference, Platinum in Transition 
‘Boom or Bust. 

[50] Rocha V, A., Bassani, MA. (2023). Practical application of a 
multi-layer scorecard workflow (MLSW) for comprehensive 
mineral resource classification. Applied Earth Science: 
Transactions of the Institute of Mining and Metallurgy. 
doi:https://doi.org/10.1080/25726838.2023.2244775. 

[51] Ortiz, J., Deutsch, C. (2003). A practical way to summarize 
uncertainty for classifcation. Centre for computational 
geostatistics, report fve, University of Alberta 14. 

[52] Glacken, I., Snowden, D. (2001). Mineral resource estimation, In 
Edwards, A. C. 

[53] Revuelta, MB. (2018). Mineral Resources :From Exploration to 
Sustainability Assessment. 

[54] Da Rocha, MM., Yamamoto, JK. (2000). Comparison between 
kriging variance and interpolation variance as uncertainty 
measurements in the Capanema iron mine, State of Minas 
Gerais-Brazil. Natural Resources Research, 9, 223-235. 
doi:https://doi.org/10.1023/a:1010195701968. 

[55] Rossi, ME., Deutsch, C V. (2014). Mineral Resource Estimation. 
doi:https://doi.org/10.1007/978-1-4020-5717-5. 

[56] Emery, X. (2008). Uncertainty modeling and spatial prediction 
by multi-Gaussian kriging: Accounting for an unknown mean 
value. Comput Geosci, 34(11), 1431-1442. doi:https://doi.org/ 
10.1016/j.cageo.2007.12.011. 

[57] McManus, S., Rahman, A., Horta, A., Coombes, J. (2020). 
Applied Bayesian Modeling for Assessment of Interpretation 
Uncertainty in Spatial Domains. Statistics for Data Science and 
Policy Analysis, 3-13. doi:https://doi.org/10.1007/978-981-15-
1735-8_1. 

[58] Riquelme, ÁI., Ortiz, JM. (2021). Uncertainty Assessment over 
any Volume without Simulation: Revisiting Multi-Gaussian 
Kriging. Math Geosci, 53, 1375-1405. 
doi:https://doi.org/10.1007/s11004-020-09907-9. 

[59] Fouedjio, F., Klump, J. (2019). Exploring prediction uncertainty 
of spatial data in geostatistical and machine learning 

approaches. Environ Earth Sci, 78(38). 
doi:https://doi.org/10.1007/s12665-018-8032-z. 

[60] Mery, N., Marcotte, D. (2022). Assessment of Recoverable 
Resource Uncertainty in Multivariate Deposits Through a 
Simple Machine Learning Technique Trained Using 
Geostatistical Simulations. Natural Resources Research, 31, 767-
783. doi:https://doi.org/10.1007/s11053-022-10028-9. 

[61] Lindi, OT., Aladejare, AE., Ozoji, TM., Ranta, J-P. (2024). 
Uncertainty Quantification in Mineral Resource Estimation. 
Natural Resources Research, 33, 2503–2526. 

[62] Mery, N., Emery, X., Cáceres, A., Ribeiro, D., Cunha, E. (2017). 
Geostatistical modeling of the geological uncertainty in an iron 
ore deposit. Ore Geol Rev, 88, 336-351. doi:https:// 
doi.org/10.1016/j.oregeorev.2017.05.011. 

[63] Stephenson, PR., Allman, A., Carville, DP., Stoker, PT., Mokos, 
P., Tyrrell, J., Burrows, T. (2006). Mineral resource classification 
- It’s time to shoot the ’spotted dog’! Australasian Institute of 
Mining and Metallurgy Publication Series. 

[64] Dumakor-Dupey, NK., Arya, S. (2021). Machine learning—a 
review of applications in mineral resource estimation. Energies 
(Basel). doi:https://doi.org/10.3390/en14144079. 

[65] Solomatine, DP., Shrestha, DL. (2009). A novel method to 
estimate model uncertainty using machine learning techniques. 
Water Resour Res, 45(12). doi:https://doi.org/ 
10.1029/2008WR006839. 

[66] Li, T., Xia, Q., Ouyang, Y., Zeng, R., Liu, Q., Li, T. (2024). 
Prospectivity and Uncertainty Analysis of Tungsten 
Polymetallogenic Mineral Resources in the Nanling 
Metallogenic Belt, South China: A Comparative Study of 
AdaBoost, GBDT, and XgBoost Algorithms. Natural Resources 
Research, 33, 1049–1071. 

[67] Zhao, J., Chi, H., Shao, Y., Peng, X. (2022). Application of 
AdaBoost Algorithms in Fe Mineral Prospectivity Prediction: A 
Case Study in Hongyuntan–Chilongfeng Mineral District, 
Xinjiang Province, China. Natural Resources Research, 31, 
2001–2022. 

[68] Farhadi, S., Tatullo, S., Boveiri Konari, M., Afzal, P. (2024). 
Evaluating StackingC and ensemble models for enhanced 
lithological classification in geological mapping. Journal of 
Geochemical Exploration, 260, 107441. doi: 
https://doi.org/10.1016/j.gexplo.2024.107441. 

[69] Farhadi, S., Afzal, P., Boveiri Konari, M., Daneshvar Saein, L., 
Sadeghi, B. (2022). Combination of Machine Learning 
Algorithms with Concentration-Area Fractal Method for Soil 
Geochemical Anomaly Detection in Sediment-Hosted Irankuh 
Pb-Zn Deposit, Central Iran. Minerals, 12(6), 689. doi: 
https://doi.org/10.3390/min12060689. 

[70] Cotrina, M.A., Marquina, J.J., Riquelme, A.I. (2025). Comparison 
of Machine Learning Techniques for Mineral Resource 
Categorization in a Copper Deposit in Peru. Natural Resources 
Research. doi: https://doi.org/10.1007/s11053-025-10505-x. 

[71] Desai, C. (2020). Comparative Analysis of Optimizers in Deep 
Neural Networks. Int J Innov Sci Res Technol 5. 

[72] Hassan, E., Shams, MY., Hikal, NA., Elmougy, S. (2023). The 
effect of choosing optimizer algorithms to improve computer 
vision tasks: a comparative study. Multimed Tools Appl, 82, 
16591-16633. doi:https://doi.org/10.1007/s11042-022-13820-0. 

[73] Nanni, L., Maguolo, G., Lumini, A. (2021). Exploiting Adam-like 
Optimization Algorithms to Improve the Performance of 
Convolutional Neural Networks. Computer Science. 



 M. A. C.-Teatino et al.,  / Int. J. Min. & Geo-Eng. (IJMGE), 59-3 (2025) 281-297191-199 297 

 

doi:https://doi.org/https://doi.org/10.48550/arXiv.2103.14689. 

[74] Hernández, H., Alberdi, E., Goti, A., Oyarbide-Zubillaga, A. 
(2023). Application of the k-Prototype Clustering Approach for 
the Definition of Geostatistical Estimation Domains. 
Mathematics, 11(3), 740. doi:https://doi.org/ 
10.3390/math11030740. 

[75] Bianchi, M., Zheng, C. (2009). SGeMS: A free and versatile tool 
for three-dimensional geostatistical applications. Ground 
Water. doi:https://doi.org/10.1111/j.1745-6584.2008.00522.x. 

[76] Remy, N. (2005). S-GeMS: The Stanford Geostatistical 
Modeling Software: A Tool for New Algorithms Development. 
doi:https://doi.org/10.1007/978-1-4020-3610-1_89. 

[77] Ali, Rezaei., Hossein, Hassani., Parviz, Moarefvand., Abbas, 
Golmohammadi. (2019) Grade 3D Block Modeling and Reserve 
Estimation of the C-North Iron Skarn Ore Deposit, Sangan, NE 
Iran. Global Journal of Earth Science and Engineering, 6(2019). 
doi:https://doi.org/10.15377/2409-5710.2019.06.4. 

[78] Heuvelink, GBM., Pebesma, EJ. (2002). Is The Ordinary Kriging 
Variance A Proper Measure Of Interpolation Error? The fifth 
international symposium on spatial accuracy assessment in 
natural resources and environmental sciences. 

[79] da Silva, CZ., Nisenson, J., Boisvert, J. (2022). Grade Control 
with Ensembled Machine Learning: A Comparative Case Study 
at the Carmen de Andacollo Copper Mine. Natural Resources 
Research, 31, 785-800. doi:https://doi.org/10.1007/s11053-022-
10029-8. 

[80] Tülay., BAYRAMİN, T. (2016). Assessment of ınverse distance 
weighting (ıdw) ınterpolation on spatial variability of selected 
soil properties in the Cukurova plain. Tarım Bilimleri Dergisi. 
doi:https://doi.org/10.1501/tarimbil_0000001396. 

[81] Estrada-Gil, JK., Fernández-López, JC., Hernández-Lemus, E., 
Silva-Zolezzi, I., Hidalgo-Miranda, A., Jiménez-Sánchez, G., 
Vallejo-Clemente, EE. (2007). GPDTI: A genetic programming 
decision tree induction method to find epistatic effects in 
common complex diseases. Bioinformatics. doi:https://doi.org/ 
10.1093/bioinformatics/btm205. 

[82] Marinos, V., Marinos, P., Hoek, E. (2005). The geological 
strength index: Applications and limitations. Bulletin of 
Engineering Geology and the Environment. 
doi:https://doi.org/10.1007/s10064-004-0270-5. 

[83] Emery, X. (2009). The kriging update equations and their 
application to the selection of neighboring data. Comput 
Geosci, 13, 269-280. doi:https://doi.org/10.1007/s10596-008-9116-
8. 

[84] Adhikary, SK., Muttil, N., Yilmaz, AG. (2016). Genetic 
Programming-Based Ordinary Kriging for Spatial Interpolation 
of Rainfall. J Hydrol Eng, 21(2). doi:https://doi.org/ 
10.1061/(asce)he.1943-5584.0001300. 

[85] Marquina-Araujo, JJ., Cotrina-Teatino, MA., Cruz-Galvez, JA., 
Noriega-Vidal, EM., Vega-Gonzalez, JA. (2024). Application of 
Autoencoders Neural Network and K-Means Clustering for the 
Definition of Geostatistical Estimation Domains. Mathematical 
Modelling of Engineering Problems, 11,1207–1218. 

[86] Dorman, KS., Maitra, R. (2022). An efficient k-modes algorithm 
for clustering categorical datasets. Stat Anal Data Min. 
doi:https://doi.org/10.1002/sam.11546. 

[87] Marquina, J., Cotrina, M., Mamani, J., Noriega, E., Vega, J., Cruz, 
J. (2024). Copper Ore Grade Prediction using Machine Learning 
Techniques in a Copper Deposit. Journal of Mining and 
Environment, 15,1011–1027. 

[88] Cotrina, M., Marquina, J., Mamani, J., Arango, S., Gonzalez, J., 
Ccatamayo, J., Noriega E. (2024). Predictive model using 
machine learning to determine fuel consumption in CAT-777F 
mining equipment. Int J Min Miner Eng, 15, 147–160. 

[89] Cotrina, M., Marquina, J., Noriega, E., Mamani, J., Ccatamayo, J., 
Gonzalez, J., Arango, S. (2024). Predicting Open Pit Mine 
Production using Machine Learning Techniques: A Case Study 
in Peru. Journal of Mining and Environment, 15, 1345–1355. 

[90] Joseph, FJJ., Nonsiri, S., Monsakul, A. (2021). Keras and 
TensorFlow: A Hands-On Experience. EAI/Springer 
Innovations in Communication and Computing. 
doi:https://doi.org/10.1007/978-3-030-66519-7_4. 

[91] Kingma, DP., Ba, JL. (2015). Adam: A method for stochastic 
optimization. 3rd International Conference on Learning 
Representations, ICLR 2015 - Conference Track Proceedings. 

[92] Elshamy, R., Abu-Elnasr, O., Elhoseny, M., Elmougy, S. (2023). 
Improving the efficiency of RMSProp optimizer by utilizing 
Nestrove in deep learning. Sci Rep, 13, 8814. 

[93] Tian, Y., Zhang, Y., Zhang, H. (2023). Recent Advances in 
Stochastic Gradient Descent in Deep Learning. Mathematics, 11, 
682. 

[94] Lydia, AA., Francis, FS. (2019). Adagrad - An Optimizer for 
Stochastic Gradient Descent. INTERNATIONAL JOURNAL 
OF INFORMATION AND COMPUTING SCIENCE 6. 

[95] Yacouby, R., Axman, D. (2020). Probabilistic Extension of 
Precision, Recall, and F1 Score for More Thorough Evaluation 
of Classification Models. doi:https://doi.org/ 
10.18653/v1/2020.eval4nlp-1.9. 

[96] Dalianis, H. (2018). Evaluation Metrics and Evaluation. Clinical 
Text Mining. doi:https://doi.org/10.1007/978-3-319-78503-5_6.  


