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A B S T R A C T 

 

In this study, two behavioral models—unified and multilaminate—are employed to simulate soil behavior. The unified model incorporates a 
non-associated flow rule along with the critical state concept. Additionally, the sub-loading surface concept is adopted to capture a smooth 
elastic-plastic transition. For numerical implementation, the implicit Euler method is used. The multilaminate model is based on a 13-plane 
framework, in which each plane exhibits elastic-plastic behavior. The overall soil response is obtained by integrating the elastic-plastic 
responses of the individual planes oriented in various directions at a material point. A set of unconventional constitutive equations is applied 
to each plane. This model captures soil softening behavior more realistically due to the use of a non-classical plasticity approach. Moreover, it 
accounts for the effect of induced anisotropy. To evaluate the models, four clay samples subjected to monotonic loading—under both drained 
and undrained conditions—were analyzed using both the unified and multilaminate models and were compared with experimental data. The 
results demonstrate that the unified model offers a more favorable representation of soil behavior. 

Keywords: General dilatancy rule, Implicit method, Multilaminate theory, Sub-loading surface, Unified model. 

 

 

1. Introduction 

During recent decades, various constitutive models have been 
presented to model the behavior of clay and sand. In this regard, based 
on the critical state concept, the Cam-Clay model (CCM) was presented 
by Roscoe and Schofield [1]. This model has been successful in 
simulating the behavior of normally consolidated clay [2]-[4]. 
Subsequently, maintaining the same methodological framework, Roscoe 
and Burland (1968) proposed the modified Cam-Clay (MCC) model 
specifically for clay exhibiting a higher overconsolidation ratio [5]. 
However, the proposed models have limitations in simulating the 
behavior of overconsolidated clay and sand (Fig. 1). These limitations 
include the overprediction of yield stress due to the yield surface used 
in these models for overconsolidated clay [4], [6]. Indeed, using the 
associated flow rule in the mentioned models results in poor predictions 
of behavioral characteristics, such as those of normally consolidated clay 
under undrained conditions (Fig. 2) conditions [7], [8]. Furthermore, 
the CCM and MCC version were not developed for sand [8]-[11]. In this 
context, numerous modifications have been made to these models to 
achieve accurate predictions of the behavior of overconsolidated clay 
and sand [3], [12]-[17]. However, the proposed models are only suitable 
for predicting the behavior of either clay or sand. As a result, further 
efforts were made to develop unified behavioral models. Yu (1998) 
proposed a unified model for both clay and sand, known as the CASM 
[18]. In this model, a unified yield function and the concepts of critical 
state and state parameter are used. The unified CASM model follows a 
non‐associated flow rule. Yu demonstrated that the proposed model can 
effectively predict the behavior of both clay and sand within a unified 
framework. However, the CASM model followed the classical plasticity 
theory, which led to the prediction of sudden behavior from the elastic 
to the plastic state. This model was not able to model the smooth 
behavior observed in real soil behavior. Therefore, Yu and Khong (2003) 
introduced the CASM-b model, which utilizes the concept of a  

 
 
bounding surface [19]. Their proposed model can predict a smooth 
behavior from the elastic to the plastic state. However, an explicit 
numerical integration method has been used in the presented models. 
According to the conducted research, it has been demonstrated that the 
use of explicit numerical integration methods in the implementation of 
behavioral models leads to convergence for small strains; however, the 
solutions do not converge for large strains. Conversely, it has been 
shown that the use of implicit numerical integration methods in the 
implementation of behavioral models can result in the convergence of 
responses for each increase in strain. [13],[20]-[23]. Moghadam et al. 
proposed a new formulation based on the concept of the bounding 
surface and on using the implicit method to model the behavior of 
overconsolidated clay [24]. This model can predict the behavior of 
overconsolidated smooth clay with proper accuracy and convergence. 
Recent advancements in unified models have demonstrated their 
efficacy in simulating the behavior of both clay and sand. However, these 
models exhibit limitations when it comes to accurately predicting the 
phase transition behavior that is commonly observed in 
overconsolidated clay and dense sand. This is due to the dilatancy rule 
considered in these models. According to the research conducted in this 
field, it has been determined that soil dilatancy depends on the state 
parameter in addition to the stress ratio [12], [25]. While the dilatancy 
rule incorporated in the CASM model is solely dependent on the stress 
ratio. Therefore, in the present model, a general dilatancy rule is 
employed, which depends on the state parameter and internal variables 
of the soil. In this study, we present a unified model that characterizes 
the behavior of clay and sand under monotonic loading conditions, both 
drained and undrained. The proposed model utilizes the concept of a 
bounding surface, based on the radial mapping rule, to effectively 
simulate smooth behavior. This model is presented in the form of the 
critical state and state parameter concepts. Additionally, the proposed 
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unified model incorporates a non-associated flow rule along with an 
isotropic hardening rule. Furthermore, an implicit method based on the 
return mapping algorithm has been employed to implement the current 
model. 

In this research, the code of Moghadam et al. (2022) has been 
developed. To verify the developed code, the results from triaxial tests 
were utilized. In the literature, a considerable number of triaxial tests 
have been presented to investigate the behavior of soils under 
monotonic and cyclic loading, for drained and undrained conditions 
[26]-[31]. Several of these tests were selected to verify the model. 
Subsequently, the results of the unified behavioral model have been 
compared with those of the multilaminate behavioral model and 
laboratory data.  The unified model shows a more acceptable 
performance in modelling soil behavior under monotonic loading in 
both drained and undrained conditions. The unified model accurately 
predicts the behavioral characteristics of clay and sand under monotonic 
loading, including soft behavior, transitioning from elastic to plastic, 
softening and hardening behaviors, dilatancy, and phase transition 
behavior. 

 

 
 

 
Figure 1. Cam- Clay prediction for drained compression of a heavily over 
consolidated of Weald clay (OCR=24). 

 

1.1. Innovations of the article 

In the following article, a unified behavioral model is utilized to 
model the behavior of clay and sand. Additionally, the non-associate 
flow rule is used. A general flow rule for clay and sand has also been 
employed, which effectively models the behavior of overconsolidated 
clays. Furthermore, the results of the unified behavioral model are 
compared with those of the multilaminate behavioral model. 

2. Description of the unified model 

In this section, the proposed unified model for clay and sand to model 
the monotonic loading behavior under drained and undrained 
conditions is presented in detail. The bounding surface theory is 

employed based on a radial mapping rule. This model incorporates the 
concepts of the critical state and state parameter to provide a unified 
representation of clay and sand behavior. To determine the plastic strain 
in the current model, the non-associated flow rule is utilized. Moreover, 
to establish a relationship between the increase in plastic volumetric 
strain and the increase in plastic deviatoric strain, a general dilatancy 
rule has been incorporated into this model. Additionally, to implement 
the model, an implicit numerical integration method based on the 
return mapping algorithm has been employed. The elastic-plastic 
equations used in the proposed model, based on the implicit method, 
are given in section 3. 

 

 
 

 
Figure 2. Cam- Clay prediction for undrained compression of a normally 
consolidated of weald clay (OCR=1) 

2.1. General formulation of the model 

To describe the behavior of the soil under triaxial stress conditions, 
the components of the average effective stress 𝑝′ and the deviatoric 
stress q have been utilized, as defined by the following relationships 
[32]. 

 

p′ =
σ1+σ2+σ3

3
                                                                                              (1) 

 

𝑞 =
1

√2
√(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2                                    (2) 

 

Furthermore, the volumetric strains 𝜀𝑉  and deviatoric 𝜀𝑞 
corresponding to the stress components are expressed according to the 
following relationships: 

 

εV = ε1 + ε2 + ε3                                                                                        (3) 
 

εq =
2

3
(ε1 − ε3)                                                                                       (4) 

 

Additionally, based on the plasticity theory, it is assumed that the 
increase in total strain 𝑑𝜀  consists of two components: elastic and 
plastic, as expressed in Equation (5): 

 

𝑑𝜺 = 𝑑𝜺𝑒 + 𝑑𝜺𝑝                                                                                         (5) 
 

In this context, 𝑑𝜺𝑒  represents the increment of elastic strain, which 
can be determined using the elastic behavior parameters of the soil 
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discussed in section 2.4. 
In the above relationship, 𝑑𝜺𝑝 represents the increase in plastic strain, 

which is calculated based on the non-associated flow rule and the 
concept of the bounding surface (see Sections 2.10 and 2.12). In the 
current model, compression loading is considered positive and tension 
loading is considered negative for deviatoric stress. 

2.2. Critical state 

The critical state of soil refers to a specific condition in soil mechanics 
where the soil reaches a state of constant volume and constant shear 
stress during shearing. In the current model, the critical state is defined 
by a line in the 𝑒 − 𝑙𝑛𝑝′ and 𝑞 − 𝑝′planes. The critical state void ratio 
is related to the confining pressure, and its value decreases as the 
confining pressure increases. The critical state line (CSL) is defined in 
the 𝑒 − 𝑙𝑛𝑝′ and 𝑞 − 𝑝′ planes by the following Equations [32]: 

 

𝑒cr = 𝑒Γ − 𝜆cr𝑙𝑛𝑝′                                                                                     (6) 
 

𝑞 = 𝑀cr𝑝′                                                                                                 (7) 
 

In this context, 𝑒𝑐𝑟 represents the critical state void ratio. To establish 
the critical state line in the 𝑒 − 𝑙𝑛𝑝′ plane, two parameters, 𝑒Γ and 𝜆cr, 
are utilized. These parameters represent the critical state void ratio 
corresponding to 𝑝′ = 1𝑘𝑃𝑎  and the slope of the critical state line in 
this plane, respectively. 

As shown in Figure 3, the critical state line in the 𝑞 − 𝑝′ plane is 
determined by a straight line with slope 𝑀cr passing through the origin 
of the graph. In this context, 𝑀cr is calculated using the Mohr-Coulomb 
criterion in the yield state, based on the soil internal friction angle 𝜑 
[33]: 

 

𝑀cr =
6𝑠𝑖𝑛𝜑

3𝑡−𝑠𝑖𝑛𝜑
                                                                                             (8) 

The Equation defines 𝑡 as a scalar parameter that depends on the type 
of loading. In the case of compressive loading, 𝑡 = +1 and 𝑀cr = 𝑀c ; 
whereas for tensile loading, 𝑡 = −1 and 𝑀cr = 𝑀e are considered. 

2.3. State parameter 

The state parameter in soil mechanics is a concept used to describe 
the current condition of a soil element in terms of its stress and 
volumetric characteristics. It is particularly useful in understanding the 
behavior of soils under different loading conditions. In the current 
model, the state parameter is determined according to the following 
relationship [8]: 

 

𝜓 = 𝜗 − 𝜗𝑐𝑟= 𝜗 − (𝜗Γ − 𝜆ln (𝑝′))                                                           (9) 
 

where 𝜗Γ and 𝜆 are material parameters that define the critical state 
line in the 𝜗 − ln (𝑝′) plane. 

 

2.4. Elastic behavior 

In the proposed model, the elastic behavior of soil is described by the 
bulk modulus K and shear modulus G [34]. 

 

K =
νp′

κ
                                                                                                    (10) 

 

G =
3(1−2μ)

2(1+μ)
K                                                                                         (11) 

 

In these relationships, 𝜈 = 1 + 𝑒 is the specific volume, 𝜅 is the slope 
of the loading-unloading line in the 𝑒 − 𝑙𝑛𝑝′ plane, and 𝜇 denotes the 
Poisson's ratio. 

2.5. Plastic behavior 

The models presented based on the classical plastic theory are based 
on the assumption that the inner region of the yield surface is 
completely elastic [32], [35]. As a result, considering this assumption in 
such models makes the behavior of the material completely elastic until 
the stress state reaches the yield point, and then the behavior of the 

material changes to an elastic-plastic state. Therefore, such an 
assumption will lead to the prediction of a sudden behavior from elastic 
to plastic state. However, according to laboratory observations, it has 
been determined that materials under loading show a soft behavior [32], 
[35]. In this context, to predict the soft behavior of materials, the non-
classical plastic theory based on the bounding surface concept by 
Dafalias and Popov [36], along with the subloading surface theory by 
Hashiguchi [37],[38], has been introduced. In the current model, the 
bounding surface theory has been employed to describe plastic 
behavior, owing to its relative simplicity and ease of implementation. 

According to the bounding surface theory, plastic deformations are 
created from the beginning of loading and the elastic area is reduced to 
one point [14], [39]-[40]. This theory uses two internal and external 
surfaces to describe elastic-plastic behavior [36], [39]-[41], in which the 
inner surface is considered as the loading surface and the current stress 
point always passes through it. According to this theory, the external 
surface is considered as the bounding surface and the image stress state 
is always placed on this surface. Various models have been developed to 
predict the cyclic and monotonic responses of soils based on these 
approaches [42]-[45]. The use of two loading surfaces, the loading 
surface and the bounding surface according to this theory is shown in 
Figure 3. 

To determine the image stress state corresponding to the current 
stress state, a mapping rule is utilized [39], [41]. 

2.6. Radial mapping rule 

As shown in figure 3, in the current model, a radial mapping rule is 
used to determine the image of the current stress state on the bounding 
surface. Based on the radial mapping rule, the image of the stress point 
on the bounding surface, defined by a straight line that passes through 
the origin of the stress space and the current stress point on the loading 
surface, determines the image of the stress on the bounding surface [14], 
[ 39], [41]. 

According to the geometric similarity of loading and bounding 
surfaces, the following relationship can be established between the 
current state of stress and its image, as well as the stress components:  

 

𝛾 =
𝝈

𝝈𝑗
=

𝑞

𝑞𝑗
=

𝑝′

𝑝𝑗
′ =

𝑝𝑐
′

𝑝𝑐𝑗
′                                                                                  (12) 

 

In this Equation, 𝛾 is defined as the ratio of the size of the surfaces 
and determines the distance or proximity of the loading surface to the 
bounding surface. In the above relationship, 𝝈  specifies the current 
stress state, 𝑝′ is the average effective stress component, and q is the 
deviatoric stress component related to the current stress state. In 
addition, 𝝈𝑗 expresses the image stress state on the bounding surface, 
𝑝𝑗

′ is the average effective stress component and 𝑞𝑗  is the deviatoric 
stress component corresponding to the image stress state. Also, 𝑝𝑐

′  
controls the size of the loading surface and 𝑝𝑐𝑗

′  is the isotropic hardening 
parameter that determines the size of the bounding surface. 

 
 

 
Figure 3.   Loading surface, bounding surface and radial mapping rule according 
to the bounding surface theory 
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2.7. Loading surface 

To describe the unified behavior of clay and sand, the yield function 
proposed by Yu has been utilized in the current model. Here, the loading 
surface function is defined according to the following Equation [18]. 

 

𝐹(𝝈) = (
𝑞

𝑀𝑐𝑟𝑝′
)𝑁 + ln (

𝑝′

𝑝𝑐
′) /ln (𝑅)                                                             (13) 

 

Where N and R are the material parameters. The parameter N 
controls the shape of the loading surface and the parameter R expresses 
the ratio between the values of 𝑝𝑐

′  and 𝑝′ at the intersection point of the 
yield surface and the critical state line. 

In addition, the value of 𝑀𝑐𝑟 according to Equation (8), is dependent 
on the type of loading, where: 

 

{
𝑖𝑓 𝑞 > 0 𝑡ℎ𝑒𝑛 𝑡 = +1, compressive loading

𝑖𝑓 𝑞 ≤ 0 𝑡ℎ𝑒𝑛 𝑡 = −1, extensive loading
                                             (14) 

2.8. Bounding surface 

According to the bounding surface theory, in the present model, it is 
assumed that the bounding surface has the same shape as the loading 
surface. The bounding surface function in the proposed model is defined 
according to the following relationship: 

 

𝐹(𝝈𝑗) = (
𝑞𝑗

𝑀𝑐𝑟𝑝′
𝑗

)𝑁 + ln (
𝑝′

𝑗

𝑝𝑐𝑗
′ ) /ln (𝑅)                                                         (15) 

2.9. General dilatancy rule and plastic potential function 

The dilatancy rule dictates the orientation of plastic flow within 
materials [25], [46]. In this study, the general dilatancy rule proposed 
by Li and Dafalias has been slightly modified to account for the effects 
of the overconsolidation ratio (OCR), specifically for clay materials. 

 

𝑑𝜺𝑣
𝑝

𝑑𝜺𝑞
𝑝 =

𝑑0

𝑀cr
(

𝑀cr

𝜂̅
𝛾𝛽exp (𝑚𝜓) − 1)                                                           (16) 

 

In this Equation, d represents the dilatancy, d𝛆v
p is the increase in the 

plastic volumetric strain, 𝑑𝜺𝑞
𝑝 is the increase in the plastic deviatoric 

strain, d0, 𝑚 and β are the parameters of the material and 𝜂̅ is the stress 
ratio. This relationship can well model the behavior of both clay and 
sand. In the proposed model, the direction of the plastic strain vector is 
determined by the vector perpendicular to the plastic potential surface. 
The function of the plastic potential surface is obtained by integrating 
Equation (16): 

 

𝑄(𝝈) =
𝑞

𝑝′
+

𝑑0𝑒𝛽𝜓

1−
𝑑0

𝑀cr

[1 − (
𝑝0

′

𝑝′
)

1−
𝑑0

𝑀cr]                                                           (17) 

 

Where 𝑝0
′  determines the size of the plastic potential surface. 

However, this variable has no effect on the calculations of the plastic 
strain and is removed from the calculations by deriving the relation for 
the plastic potential function. 

2.10. Non‐associated flow rule 

To determine the size and direction of plastic strains in the current 
model, a non-associated flow rule has been employed [32]. 

 

𝑑𝜺𝑝 =
𝑑𝜆

𝜕𝑄

𝜕𝜎

∥
𝜕𝑄

𝜕𝝈

∥= 𝑑𝜆. 𝒎                                                                                (18) 
 

Where 𝒎 =
𝜕𝑄

𝜕𝜎
/∥

𝜕𝑄

𝜕𝝈
∥ specifies the unit vector that is perpendicular 

to the plastic potential surface and the direction of the plastic strain 
vector is determined by this vector. Also, 𝑑𝜆 is the plastic coefficient and 
the size of the plastic strain increase is determined by it (∥ 𝑑𝜺𝑝 ∥= 𝑑𝜆). 
In addition, the volumetric and deviatoric components of the plastic 
strain increase vector can be calculated by the following relations: 

 

𝑑𝜺𝑣
𝑝

= 𝑑𝜆
𝜕𝑄

𝜕𝑝′
/∥

𝜕𝑄

𝜕𝝈
∥= 𝑑𝜆. 𝑚𝑝                                                                    (19) 

 

𝑑𝜺𝑞
𝑝

= 𝑑𝜆
𝜕𝑄

𝜕𝑞
/∥

𝜕𝑄

𝜕𝝈
∥= 𝑑𝜆. 𝑚𝑞                                                                  (20) 

Where 𝑚𝑝 =

𝜕𝑄

𝜕𝑝′

∥
𝜕𝑄

𝜕𝝈

∥  and  𝑚𝑞 =
𝜕𝑄

𝜕𝑞
/∥

𝜕𝑄

𝜕𝝈
∥  are respectively the 

volumetric and deviatoric components of the unit vector perpendicular 
to the plastic potential surface. In Figure 4, the application of the non‐
associated flow rule is shown. 

 

 

 

Figure 4. Non‐associated flow rule. 
 

In this context, the dilatancy relation can be employed to calculate 
the increase in the plastic strain vector and its components. Considering 
that the size of the vector m is equal to one,           ∥ 𝒎 ∥= √𝑚𝑝

2 + 𝑚𝑞
2 =

1, and also using the dilatancy relation 𝑑 =
𝑑𝜺𝑣

𝑝

𝑑𝜺𝑞
𝑝 =

𝑚𝑝

𝑚𝑞
,  we will have: 

𝑑𝜺𝑣
𝑝

=
𝑑

√1+𝑑2
                                                                                                           (21) 

 

𝑑𝜺𝑞
𝑝

=
𝑡

√1+𝑑2
                                                                                                     (22) 

 

2.11. Isotropic hardening rule 

Based on the isotropic hardening rule, by creating plastic 
deformations, the yield surface can expand or contract in the stress 
space while keeping the shape and location constant (Figure 5). 
According to the hardening rule considered in the present model, the 
changes in the size of the bounding surface 𝑑𝑝𝑐𝑗

′  will be linearly related 
to the increase in the plastic volumetric strain 𝑑𝜀𝑣

𝑝 [34]. 
 

𝑑𝑝′
𝑐𝑗

= 𝑝′
𝑐𝑗

𝜗

𝜆−𝜅
𝑑𝜺𝑣

𝑝                                                                                       (23) 
 

 

 

 
Figure 5. Isotropic hardening rule. 

2.12. The rule governing changes in the ratio of surface sizes 

To facilitate plastic deformations from the onset of loading, the 
proposed model assumes that plastic strains vary according to the size 
ratio of the loading surface to the bounding surface. To achieve this, a 
rule is applied to account for changes in the surface size ratio, as 
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described by the following Equation [35]. 
 

𝑑𝛾 = 𝑈(𝛾) ∥ 𝑑𝜺𝑝 ∥, ∥ 𝑑𝜺𝑝 ∥= 𝑑𝜆                                                             (24) 
 

In this Equation, U(γ) is a decreasing function of γ that must satisfy 
the following conditions [40]. 

 

𝑈(𝛾) = +∞ 𝑓𝑜𝑟 𝛾 = 0                                                                              
 

𝑈(𝛾) > 0 𝑓𝑜𝑟 0 < 𝛾 < 1                                                                      
 

𝑈(𝛾) = 0 𝑓𝑜𝑟 𝛾 = 1                                                                               (25) 
 

𝑈(𝛾) < 0 𝑓𝑜𝑟 𝛾 > 1                                                                                  
 

Thus, the function provided by Hashiguchi [35] was utilized to 
establish the conditions outlined in Equation 25. 

 

𝑈(𝛾) = −𝑢𝑙𝑛(𝛾)                                                                                     (26) 
 

Equation (26) correctly establishes the conditions of Equation (25). 
In this Equation, u is the material parameter. 

3. Implementation of the model by implicit method 

In this section, the implementation of the proposed model is 
presented in an implicit way, based on the return mapping algorithm. 
Unlike the return mapping algorithm in classical models, which 
necessitates a process to ascertain whether the stress state lies outside or 
inside the yield surface, the algorithm employed in this model simplifies 
the elastic state to a single point. Consequently, it does not involve a 
state determination process. The process related to the implementation 
algorithm of the proposed model includes two steps: predicting the 
elastic state and correcting the plastic state. 

3.1. The process of predicting the elastic state 

In the elastic state prediction process, at each loading step, the stress 
state is calculated, assuming that the strains are elastic: 

 

𝝈𝑇𝑟𝑖𝑎𝑙 = 𝝈𝑛 + 𝑫𝑛+1
𝑒 𝑑𝜺𝑛+1                                                                         (27) 

 

In this Equation, 𝝈𝑇𝑟𝑖𝑎𝑙 specifies the stress on the elastic state, 𝑛 and 
𝑛 + 1 represent the previous step and the current step, respectively, and 
𝑫𝑒  is the material's elastic matrix. During the continuation of the 
process, the elastic state stress and other state variables are adjusted in 
the plastic correction process. Figure 6 illustrates the changes in the 
yield surface due to plastic deformation, in accordance with the 
isotropic hardening rule. 

 

 
 

Figure 6. Return mapping algorithm. 

 
It should be noted that the return mapping algorithm here means that 

in each loading step, the elastic stress state is returned to the current 
loading surface by the elastic-plastic equations. The calculation method 
based on this algorithm is shown in Figure 6. 

3.2. Plastic correction process 

During this process, the amount of elastic stress calculated in the 

previous process, the flow rule, the isotropic hardening rule, as well as 
the changes in the ratio of surface sizes rule, will be corrected in such a 
way that the consistency condition is established. Thus, to establish the 
specified conditions, the following equations were employed in the 
plastic correction process. 

 

a. Equilibrium equation 
The state of stress should always satisfy the equilibrium Equation: 
 

𝑑𝝈 = 𝑫𝑒𝑑𝜺𝑒                                                                                                (28) 
 

By implicitly integrating the above Equation from step n to n+1 and 
also inserting relations (5) and (27) into the resulting Equation, the 
equilibrium Equation is obtained according to the following Equation. 

 

𝝈𝑛+1 = 𝝈𝑇𝑟𝑖𝑎𝑙 − 𝑫𝑛+1
𝑒 𝑑𝜺𝑛+1

𝑝                                                                 (29) 
 

b. Surface size ratio changes 
 

To generate plastic strains based on the size ratio of the surfaces, 
Equation (24) must be established. Therefore, by numerically implicitly 
integrating this Equation, we will have: 

 

𝛾𝑛+1 = 𝛾𝑛 − 𝑢𝑙𝑛(𝛾𝑛+1)𝑑𝜆                                                                     (30) 
 

c. Isotropic hardening rule 
By creating plastic deformations, the bounding surface expands or 

contracts according to the isotropic hardening rule. Therefore, by 
numerical implicit integration of Equation (23), the following 
relationship is obtained: 

𝑝′
𝑐𝑗,𝑛+1

= 𝑝′
𝑐𝑗,𝑛

exp (
𝜗𝑛

𝜆−𝜅
(𝑑𝜺𝑣

𝑝)𝑛+1)                                                            (31) 
 

d. Consistency condition 
 

Based on the consistency condition, the stress state should always be 
located on the loading surface in elastic-plastic conditions [35]. 
Therefore, the current stress state must satisfy the loading surface 
Equation: 

𝐹(𝝈𝑛+1) = (
𝑞𝑛+1

𝑀𝑐𝑟𝑝′
𝑛+1

)𝑁 +
ln(

𝑝′
𝑛+1

𝛾𝑛+1𝑝𝑐𝑗,𝑛+1
′ )

ln(𝑅)
= 0                                          (32) 

Finally, by establishing Equations (29)-(32) at the same time, a system 
of nonlinear equations is formed. To solve this system of Equations, the 
Newton-Raphson iterative procedure is used. In Fig. 7, the unified model 
algorithm is presented in an implicit format. 

4. Calculation of model input parameters 

The unified model comprises 12 input parameters for monotonic 
loading, and the values of these parameters must be measured prior to 
modelling. In this model, the elastic behavior of the soil is defined by 𝜇 
and 𝜅. The Poisson's ratio 𝜇 affects the shear modulus and for soil it has 
a value between 0.2 and 0.4 and can be determined by the triaxial test 
considering the elastic behavior in the plane 𝜀𝑎 − 𝜀𝑣 [32], [47] . 𝜅 
expresses the slope of the unloading line in the 𝜗 − 𝑙𝑛𝑝′ plane. This 
parameter has a value between 0.001 and 0.01 for sand and 0.01 and 0.06 
for clay [32], and its value can be determined by isotropic consolidation 
tests. In the proposed model, 𝑀𝑐𝑟 , 𝜆, 𝑒Γ are critical state parameters. 𝜆, 𝑒Γ 
determines the position of the critical state line in the 𝑒 − ln(𝑝′) plane. 
𝜆 represents the slope of the critical state line (loading line) and 𝑒Γ 
specifies the critical state void ratio at unit confining pressure and can 
be obtained using isotropic consolidation tests. In addition, 𝑀𝑐𝑟 
expresses the slope of the critical state line in the 𝑞 − 𝑝′ plane and has 
different values for the compressive and extensive loading states, which 
are indirectly determined based on the internal friction angle in the 
yielding state of the soil. Also, this parameter can be determined directly 
using triaxial tests by the ratio of critical state effective stresses in 
different loading paths. In the present model, as in the model presented 
by Yu, two parameters N and R are used in the yield function equation, 
where 𝑁 controls the shape of the yield surface and 𝑅 determines the 
ratio between 𝑝𝑐

′  and 𝑝′  at the point where the critical state line 
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intersects the loading surface. These parameters are assumed to be 
constant in the Cam-Clay and MCC models. For the values of 𝑁 = 1 and 
𝑅 = 2.718, the yield surface of the CCM is obtained, and for the values 
of 𝑁 = 1.7  and 𝑅 = 2 , the yield surface of the modified Cam-Clay 
model is approximately obtained. According to the laboratory results, 
the value of R for clay is in the range of 1.5 to 3 and for sand it has larger 
values. Also, the parameter N has a value between 1 and 5 [32]. The 
values of N and R can be calibrated by effective stress paths obtained 
from undrained triaxial tests on soils in their loose state. Under the 
assumption that elastic strains are negligible compared to plastic strains, 
the dilatancy parameters (𝑑0 , 𝛽 ,m) can be determined by fitting the 
stress-ratio-total dilatancy curve in standard drained triaxial 
compression tests. The parameter 𝑢 is introduced in this model based 
on bounding surface theory, which controls the transition from elastic 
to plastic behavior in materials. It can be determined from the stress-
strain curve; smaller values of 𝑢 indicate softer material behavior, while 

larger values lead to a sudden shift towards classical behavior. 

5. Multilaminate model 

In the multilaminate framework, the core approach involves 
calculating the numerical integral of a specific mathematical function by 
expanding it on the surface of a unit sphere. This function represents 
variations in various physical properties across the sphere's surface [48]-
[52]. In this research, a model consisting of 13 planes, each exhibiting 
elastic-plastic behavior, was utilized to estimate the sphere's surface. The 
overall behavior of the soil is derived from the cumulative effects of 
these planes. Each plane is described by a series of non-classical 
structural equations. To evaluate the function values at each point, a 
well-known relation is employed based on the function values from the 
different planes of the hemisphere. 

 

 
Figure 7. Unified model program algorithm using the implicit method. 

 
∫ ∫ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝛺 = 8𝜋 ∑ 𝑤𝑖𝑓𝑖

𝑖=13
𝑖=1𝛺

(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)                                               (33) 
 

Ω shows the area of the sphere. n represents the number of defined 
points and 𝑤𝑖  is the weight coefficient of the i-th base point. The 
position of the sphere and the 26 defined points are shown in Figure 8. 
The direction cosines of the desired 13 planes along with their weight 
coefficients are shown in Table 1, and the extension of the 13 planes in 
the center of the cube is shown in Figure 9. 
This program is able to model the soil softening behavior more 
realistically due to the use of a non-classical plasticity model. In fact, it 
somehow considers the effect of induced anisotropy. The multi-plane 
model has six parameters that must be calibrated through laboratory 
test data. These parameters are: λ, 𝑀𝑐𝑟 , κ, 𝑢0, 𝜇 and 𝐹0. The calculation 

method of these parameters was presented in the previous section. A 
hardening-softening function has been used for soil in the form of the 
following relationship [53], [54]. 
 

𝐹 = 𝐹0exp (
𝐻

𝜆−𝜅
)                                                                                            (34) 

 

In this formula, parameter F0 represents the initial value of F. In 
classical continuum mechanics, it is common to describe the evolution 
of the isotropic hardening/softening variable by volumetric plastic 
strain. Therefore, the isotropic hardening/softening variable in this 
model is related to plastic strain, which plays the role of volumetric 
plastic strain in the multi-plane model, in its simplest form. 

 

𝐻 =̇ 𝜀𝑛
𝑝̇                                                                                                            (35) 
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Figure 8. The position of the sphere and the 26 mentioned points. 

 
 

The Equation of the sub-loading surface 𝑓(𝝈) is also as follows. 
 

𝑓(𝝈) = (𝝈𝑛) +
2

3
×

𝜏

𝑀𝑐𝑟(𝝈𝑛)
= 𝑅𝐹(𝐻)                                                             (36) 

 

In the above relationship, the parameters 𝜎𝑛  and 𝜏  represent the 
amount of normal and shear stress in each plane. 

6. Modelling triaxial tests 

In the following research, the modelling of triaxial tests in drained and 
undrained conditions for four clay samples was done using the unified 
model and multilaminate theory and its results were compared with 
laboratory results. In Table 2, the parameters used for the clay samples 
studied in this research are presented. 

 
Figure 9. Extension of the 13 planes in the center of the cube. 

6.1. Triaxial drained test on Weald clay 

The prediction of drained triaxial compressive behavior under constant 
lateral pressure using the unified model and multilaminate model is 
presented in Figs. 7 and 8 for Weald clay and kaolinite-silt mixtures. In 
general, according to the results, the unified model is well able to model 
the phase transition behavior from elastic to plastic state. Also, the 
concavity and convexity of stress- axial strain curve and volumetric 
strain-axial strain curve can be well modeled by the unified model.  
 

Laboratory drained triaxial test on Weald clay soil was performed by 
Skempton & Brown (1961) [26]. The results of the stress-strain diagrams 
of the above-mentioned model with the results obtained from the 
laboratory tests are presented in Figure. According to the obtained 
results, the agreement of the model with the laboratory data is very high. 
The initial stress state in this test  σ0 = −67I kPa . 

6.2. Triaxial drained test on Kaolinite-silt mixtures 

Laboratory drained triaxial test on kaolinite–silt mixtures soil by 
Stark et al. (1994) has been done [27]. The proposed model provides 
relatively acceptable results for both stress-axial strain and volumetric 
strain-axial strain diagrams, and the trend of the graphs follows the 
trend of the laboratory graphs. The initial stress state in this test is: σ0 =
−1275?  kPa. It is clear that the unified model has a better prediction 
than the multilaminate model for stress-axial strain and volumetric 
strain-axial strain diagrams. The consistency of the results of the unified 
model with the laboratory data is better (Fig. 11). 
 

 
(a) Deviatoric stress- axial strain curve. 

 

 
(b) Volumetric strain - axial strain curve. 

 

Figure 10. Comparison of modelling results with laboratory data on Weald clay 
soil for drained triaxial compression test under constant lateral pressure. 

 

Table 1. Plane numbers, direction cosines, and their weighting coefficients. 
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Table 2. The parameters of the studied soils. 

Red Clay London Clay Kaolinite–Silt Weald Clay Parameter 

2000 12000 18000 6500 G(kPa) 
Elastic parameters 

0.012 0.0063 0.006 0.002 κ 

1.20 1.3 1.36 1.2 𝑀𝑐𝑟,𝑐 

Critical state parameters 
1.015 0.82 1.051 0.8 𝑀𝑐𝑟,𝑒 

0.035 0.022 0.1 0.045 λ 

2.63 1.2 0.63 1.63 𝜗Γ 

1.30 6.0 6.0 1.5 N 
Bounding surface 

2.718 2.25 2.0 2.718 R 

1.2 1.2 1.2 1.2 𝑑0 
Dilatancy 

 (Flow rule) 
0 0 0 0 β 

0 0 0 0 m 

20 70 35 33 𝑢0 
Hardening 

10 10 20 10 𝑆0(kPa) 

 

6.3. Triaxial undrained test on London clay 

Stress path and stress-strain curves were estimated by the unified model 
and multilaminate model and their results were compared with the 
results of laboratory tests. The laboratory results can be well modeled by 
both models. Undrained triaxial test on London clay soil by Bishop et al. 
(1965) has been done [28]. According to the results of the laboratory 
data, they can be better modeled by the unified model (Figure 12). 

 

 
(a) Deviatoric stress- axial strain curve. 

 
(b) Volumetric strain - axial strain curve. 

Figure 11. Comparison of the calculated results from the following models with the 
test data (after Stark et al., 1994) for the drained triaxial compressive test with 
constant lateral pressure for kaolinite–silt mixtures. 

6.4. Triaxial undrained test on Red clay 

Undrained triaxial test on red clay soil was performed by Wesley 
(1990) [29]. Triaxial tests have been performed under three constant 
lateral pressures of 50, 100, and 250 kPa. Unlike the multilaminate  

 
 
 

model, the unified model predicts well the stress-strain diagram and the 
stress path in accordance with the test data (Figure 13). 

 

 
(a). Deviatoric stress- axial strain curve. 

 
(b). Deviatoric stress - effective stress curve. 

 

Figure 12. Comparison of model results with undrained triaxial compressive test 
data under constant lateral pressure for Red Clay. 

7. Conclusions 

In this research, two behavior models, including the unified and multilaminate 
theory, have been used for soil modelling. The unified behavior model is an 

elastic-plastic model designed to simulate the behavior of clay and sand under 
monotonic drained and undrained conditions based on the concept of the 

bounding surface. This model utilizes the concepts of critical state and state 
parameter to predict the unified behavior of sand and clay. It also incorporates a 
general dilatancy rule in its formulation to capture the behavioral characteristics 

of over consolidated clay and dense sand, including phase transition behavior. 
Additionally, to predict softening behavior using the bounding surface concept, a 

new formulation based on the radial mapping rule has been  
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(a) Deviatoric stress- axial strain curve. 

 
b) Deviatoric stress - effective stress curve. 

Figure 13. Comparison of model results with undrained triaxial compressive test 
data under constant lateral pressure for Red Clay 

 

employed. In addition, the proposed model was implemented using 
Euler's implicit method based on a return mapping rule. In the 
multilaminate model, a 13-plane model is used, each of which has elastic-
plastic behavior. The behavior of the soil is obtained from the sum of 
the behavior of these planes. A series of non-classical structural 
equations has been used in each of the planes separately. This model is 
able to estimate the soil softening behavior more realistically due to the 
use of a non-classical plasticity model. In fact, it also takes into account 
the effect of induced anisotropy. The following results were obtained 
from modelling four soil samples under monotonic loading with triaxial 
tests, both in drained and undrained conditions, and compared with 
reported laboratory data: 

• The unified model shows a more acceptable performance in 
modelling soil behavior under monotonic loading in both 
drained and undrained conditions. 

• The model accurately predicts the behavioral characteristics of 
clay and sand under monotonic loading, including: 

 

o Soft behavior from elastic to plastic  
o Softening and hardening behavior 
o Dilatancy 
o Phase transition behavior 

• The implicit method based on the return mapping algorithm 
ensures optimal accuracy and convergence of responses for 
both large and small strains. 

In this paper, the behavior of soils was examined using two unified 
behavioral models: isotropic (unified model) and anisotropic (multi-
laminate). For future studies, combining the unified behavioral model 
with multi-laminate theory could provide a more effective approach to 
modelling soil behavior. The results of the developed unified code in the 
monotonic loading state were validated against laboratory data. 
Modelling cyclic tests using a hybrid unified model can significantly aid 
in validating the developed code. Since soils are predominantly 
anisotropic, incorporating a rotational hardening rule into the unified 
code enhances the model's capacity to represent anisotropic materials. 
In this context, the developed code was also validated against the results 
of triaxial and hollow cylinder tests. 

 

Notation 

σ1: major principal stress 

σ2: intermediate principal stress 

σ3: minor principal stress 

p′: average effective stress  

𝑞: deviatoric stress 

ε1: : major principal strain 

ε2: intermediate principal strain 

ε3: minor principal strain 

𝜀𝑉: volumetric strains 

𝜀𝑞: deviatoric strains  

𝜺𝑒: elastic strain vector 

𝜺𝑝: plastic strain vector 

𝑒: void ratio 

𝑒cr: critical void ratio 

 𝑒Γ: the critical state void ratio when 𝑝′ = 1𝑘𝑃𝑎 

𝜆cr: slope of the critical state line in the 𝑒 − 𝑙𝑛𝑝′ plane 

𝑀cr: The slope of the critical state line in q-p' space 

𝑡: scalar variable 

𝜑: friction angle 

𝑀c: Slope of the critical state line in compressive loading 

𝑀e: Slope of the critical state line in extensive loading 

𝜓: state parameter 

𝜗: specific volume 

𝜗𝑐𝑟: specific volume at the critical state 

𝜗Γ: reference specific volume on the critical state line at a unit confining pressure 

𝜆: the elastoplastic compressibility coefficient 

K: bulk modulus 

ν:  specific volume 

𝜅: elastic compressibility coefficient 

μ: Poisson′s ratio 

𝛾: size ratio (ratio of subloading surface size to normal yield surface size) 

𝝈: current stress state 

𝝈𝑗: image stress state on the bounding surface 

𝑞𝑗: deviatoric stress corresponding to the image stress state  

𝑝𝑗
′ : average effective stress corresponding to the image stress state 

𝑝𝑐
′ : parameter defines the size of the loading surface 

𝑝𝑐𝑗
′ : parameter defines the size of the bounding surface 

𝑁: model parameter 

𝑅: model parameter 

𝑑0: material parameter 

𝜂̅:  stress ratio  

𝛽: material parameter 

𝑚: material parameter 

𝑄: plastic potential surface 

𝑈: parameter controlling the transition behavior from elastic to plastic  
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𝐃e: elastic stiffness matrix 

𝜎𝑛: normal  stress  

𝜏: shear stress  
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