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A B S T R A C T 

 

Mass movements are one of the natural tragedies that are more manageable than other natural disasters. Therefore, it is very important to 
understand this phenomenon in order to prevent the damage it can cause. Therefore, the present research was conducted in order to assess 
the risk of landslides and prepare a map of the severity of landslide risk in the Karganeh Watershed, Lorestan Province, Iran. Interpretation 
of aerial photos and field visit were used to prepare a landslide inventory map. In this research, 16 key landslide causal factors were identified 
to explore their spatial relationship with landslides. These factors reflect both inherent geomorphological characteristics and human influences 
related to landslide occurrences. Then, landslide hazard maps were built via tree models in geographic information system (GIS). Next, the 
information layer of the elements at risk and the degree of vulnerability of the elements were extracted. Finally, the landslide risk map was 
prepared by combining maps of the hazard map, elements at risk and degree of vulnerability of elements based on the general risk equation. 
The results presented that the (SVM) model provided greatly higher prediction accuracy of the landslide hazard map in the Karganeh 
Watershed via a/an (ROC) equal to 0.913. Additionally, the results of the risk map for the Karganeh Watershed indicated that 18.2% of the 
area is in the high-risk class. This area is equivalent to 5,349 hectares. Preparing a landslide risk map helps to focus the management work in 
the sectors that have a lot of risk and reduces the waste of time and money. 
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1. Introduction 

Numerous natural hazards and related tragedies, such as earthquakes, 
volcanic eruptions, tsunamis, cloudbursts, floods, and soil erosion, occur 
around the world. Among these, landslides are one of the most severe 
and frequently recurring types of natural disasters globally (Oh and Lee, 
2017; Arabameri el al., 2020a; Karimi Sangchini et al., 2022). Landslide 
is the reason for many monetary costs and lives yearly (Kelarestaghi and 
Ahmadi, 2009). Every year, landslides have resulted in huge damage to 
life and property, including the damage of forests, fruitful cultivated 
land, habitation area, and network communication in addition to tourist 
attractions. Additionally, alteration of the Earth's surface is also 
responsible for devastating landslides. Consequently, landslides are 
accountable for huge flooding in hill areas, tsunamis in the seaside 
zones, and river form alterations sideways alongside geomorphic and 
topographical modifications (Pham el al., 2019). Consequently, landslide 
susceptibility mapping be able to be one of the key phases in 
diminishing these costs (Aleotti and Chowdhury 1999; Regmi et al. 2013; 
Karimi Sangchini et al. 2016). Iran has confronted numerous categories 
of natural threats and disasters, for example severe soil erosion through 
gully expansion, violent floods, and disturbing landslides. So, because of 
the numerous occurrences of landslides and huge financial damages, 
they have developed into national disasters of Iran. The landslide event  

 
 
in Iran has caused about 500 billion financial damage (Arabameri el al., 
2020b). Essentially, the existence of the sole natural structures for 
example physiographic, environmental, and climatic conditions along 
with anthropogenic actions and their rising demand on natural 
resources are very susceptible to landslide action in northern part of 
mountainous areas in Iran (Karimi Sangchini et al., 2011; Aghda et al., 
2018). Landslide susceptibility assessment is a vital procedure for the 
management of natural tragedies. There is no solitary method to 
recognize and prepare a zoning map to measure the susceptibility 
caused by the wide series of happenings of landslides (Chen et al., 2017a; 
Rahmati et al., 2018; Pourqasmi and Rahmati, 2018). 

By applying logical methods, a set of accurate tools is provided for 
preparing and optimizing the landslide-zoning map. Additionally, these 
tools enhance the use of landslide forecast models, reducing issues in 
hazard identification and zoning (Carrara et al., 2003; Dahal et al., 2008; 
Bathrellos et al., 2009; Kayastha et al., 2013; Karimi Sangchini et al., 
2014). In recent years, data mining models have been increasingly used 
because of their high accuracy and strong information processing 
capabilities. For example, the Artificial Neural Network is one such 
model (Chen et al., 2017a; Harmouzi et al., 2019; Yao et al., 2022), 
Logistic Regression (Hong et al., 2015; Karimi Sangchini et al., 2016; 
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Abedini et al., 2017; Hemasinghe et al., 2018, Shano et al., 2021; Puente-
Sotomayor et al., 2021). 

The random forest (RF) method is a machine learning (ML) and 
decision tree modelling technique. It assesses the connection between 
landslide occurrences and environmental factors by combining the RF 
results from multiple trees (Chen et al., 2017b). Among the researchers 
who used RF Algorithm in their studies for landslide susceptibility 
zoning, we can reference Zhou et al. (2021), Sevgen et al. (2019), Zhao 
et al. (2020), Qian et al. (2021), Sun et al. (2021) and Burak et al. (2021). 
The findings of these researchers' studies indicate that the RF algorithm 
has adequate accuracy in landslide susceptibility zoning. The maximum 
entropy (ME) model is another ML method that has been commonly 
used in recent years. Phillips et al. (2006), Convertino et al. (2013), Kim 
et al. (2015), Chen et al. (2017a), Kerekes et al. (2018), Pandey et al. 
(2020) and Barman et al. (2023) used the maximum entropy method in 
their studies to estimate landslide susceptibility. The results of these 
studies highlight the efficiency of the maximum entropy (ME) model in 
landslide susceptibility zoning. An additional ML method is support 
vector algorithm (SVM), which was used in this study for landslide 
susceptibility zoning. In their studies, Peng et al. (2014), Hang et al. 
(2015), Pham et al. (2016), Lee et al. (2017), Chen et al. (2017a), 
Kornejady et al. (2019), Panahi et al. (2020) and Balogun et al. (2021) 
conducted landslide susceptibility zoning via the support vector 
algorithm. The results of these researchers' studies established the 
usefulness of the support vector algorithm in landslide hazard zoning. 
Selecting the correct model that has significant accuracy and reliability 
can be extensively and efficiently used in the forecast and management 
of landslides in the text of land surveying package. In this study, an effort 
has been made to use the most relevant factors affecting the occurrence 
of landslides, in addition to new ML approaches in the study area. 

Landslide risk map is calculated from the involvement of three related 
factors: the possibility of a landslide with a certain magnitude (landslide 
hazard zoning), the valued elements of risk and vulnerability. Risk 
elements comprise roads and water sources, buildings, agricultural 
actions, electricity and telephone networks (Saldivar-Sali et al., 2007; 
Kunlong et al., 2007; Remondo et al., 2008, Zezere et al., 2008). Damage 
to the contents of buildings and damage to cars on the highways can 
include a huge portion of the risk, but it is hard to evaluate these costs 
and they also lack adequate data. In addition, damage to human life 
(casual damage) cannot be analyzed (Enrique et al., 2008; Karimi 
Sangchini et al., 2015). 

In this study, tree-based models of data mining algorithms were 
related for landslide susceptibility assessment in Karganeh Watershed. 
Consequently, to perform our investigation aim, 16 suitable landslides 
for this watershed area were used. Moreover, historic information of 95 
landslide polygons was chosen to enhance development in the 
investigation work. Lastly, three models used in the present research 
have been validated via statistical examination of receiver working 
characteristics-area below curve (ROC-AUC). Also, in this research, the 
hazard, the elements at risk, the vulnerability of the elements due to the 
occurrence of landslides and finally the risk of landslides in the 
Karganeh watershed are studied simultaneously. As a result, the aim of 
this research is to assess the hazard with the best methods, and to assess 
the landslide risk via hazard map, elements at risk and the vulnerability 
of risk in order to manage hazard and risk in the Karganeh watershed. 
This could be taken as a brand-new methodology toward landslide 
zoning difficulties. 

2. Materials and methods 

2.1. Study area 

The Karganeh Watershed is one of the sub-watersheds of Karkheh 
River, which is sited in the northeast of Khorramabad city. It is placed 
between 33° 25′ 12″ to 33° 37′ 12″ latitude and 48° 23′ 59″ to 48° 44′ 24″ 
longitude, occupying about 294.2 sq km in the Lorestan Province, west 
of Iran (Fig. 1). Altitude in the study area differs among 1,300 to 2,700 
m. The average annual precipitation in the watershed is 469 mm. In 
terms of stratigraphy, Karganeh Watershed has Bakhtiari, Gachsaran, 

Asmari, Kashkan, Amiran, Cretaceous limestones and contemporary 
sediments. Around 41% of this watershed is covered by rangelands and 
rocky lands, forests, residual lands, agricultural lands, and orchards 
(nearby 59% of this watershed). 

 

 
Figure 1. Geographical site of the Karganeh Watershed. 

 

2.2. Landslide inventory map 

In the present study, a landslide inventory map was prepared by field 
surveys, native data, and aerial photographs interpretation. To make this 
map for hazard assessment, one point was placed every 100 hectares. As 
there were numerous points with landslides, the same number of areas 
without landslides were taken (Figure 2). 

2.3. Selection of effective factors 

Elevation is an indirect factor that plays a crucial role in the 
occurrence of landslides. Among these factors are the amount of 
precipitation, temperature variations, freezing and thawing cycles, and 
physical and chemical weathering (Chen et al., 2017b; Kornejady et al., 
2019; Karimi Sangchini, 2024). The slope aspect significantly influences 
factors such as moisture infiltration, slip surface angle, and soil cohesion 
(Devkota et al., 2013; Balogun et al., 2021). Many studies emphasize the 
direct role of slope and its impact on landslides (Lee et al., 2005; Kerekes 
et al., 2018; Panahi et al., 2020). Aspect is of particular interest in 
landslide studies because it plays a decisive role in the amount of rainfall 
and humidity, sunlight, and wind regime—all of which contribute to the 
initiation of displacement (Arabameri et al., 2020a; Arabameri el al., 
2020b; Shano et al., 2021). Different rock units exhibit varying 
sensitivities to landslide occurrence; therefore, the geological factor is 
indispensable in all landslide-related studies and is often identified as 
the most critical factor in researchers’ findings (Karimi Sangchini, 2014; 
Panahi et al., 2020). Generally, water infiltration resulting from 
precipitation into the slope increases pore pressure, reduces soil suction, 
and increases the weight of the soil mass, ultimately decreasing the soil's 
shear strength and predisposing the slope to failure (Harmouzi et al., 
2019; Shano et al., 2021). Vegetation cover has a highly complex and 
contrasting role in landslide susceptibility. This role is determined by 
four factors, including mechanical stability provided by roots, soil 
moisture drainage via transpiration, additional loads from tree weight, 
and wind-induced failures (Sun et al., 2021). Rivers influence slope 
stability either through erosion or by increasing the solubility of 
materials due to rising water levels, which contributes to slope 
instability (Karimi Sangchini et al., 2016). The distance from faults or 
fractures and the degree of fragmentation also significantly increase the 
potential for slope instability (Lombardo et al., 2014; Lee et al., 2017). 
Human activities such as road construction and building development 
are among the most important factors leading to landslides in hilly areas 
(Kerekes et al., 2018; Arabameri et al., 2020a; Yao et al., 2022). 
Topographic indices quantitatively assess the influence of morphology 
on mass wasting processes (Kerekes et al., 2018; Pandey et al., 2020; 
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Arabameri et al., 2020a; Karimi Sangchini et al., 2024). 
By investigating the Kerganeh watershed, 19 factors were chosen as 

effective factors in landslide occurrence (Mahalingam et al., 2016; 
Arabameri et al., 2020a; Shano et al., 2022). Tolerance and (VIF) tests 
were used in SPSS software version 20 to determine the most effective 
factors by investigating collinearity among them. Tolerance scores lower 
than 0.1 and VIF scores greater than 10 show collinearity between factors 
(Lombardo et al., 2014). The presence of collinearity between the factors 
reduces the accuracy of the landslide hazard map (Kohavi, 1995; 
Václavík and Meentemeyer, 2009; Chapi et al. 2017; Jebur et al., 2014; 
Mokarram et al., 2015). In the current research, VIF and (TOL) methods 
were applied to assess multicollinearity between the different landslide-
effective factors (Lee, 2005; Devkota et al., 2013). The multicollinearity 
problems happen while the threshold rate of VIF is > 5 and TOL is <0.1. 
To compute the VIF and TOL for multicollinearity, the following 
equation has been used (Ozdemir, 2011). 

 

𝑇𝑂𝐿 = 1 − 𝑅𝑗
2                                                                                      (1) 

 

𝑉𝐼𝐹 =
1

𝑇𝑂𝐿
                                                                                              (2) 

 

Where, 𝑅𝑗
2 describe coefficient of various determination of j on the 

forecaster variables. 
The results of the collinearity test using the Tolerance and VIF indices 

are shown in Table 1. After the investigation, slope, slope direction, 
elevation classes, geology, distance from the river, distance from the 
road, distance from the fault, river power index (SPI) (Tien Bui et al. 
2016), topographic moisture index (TWI) (Wilson et al., 2000; 
Grohmann et al., 2011; Hong et al., 2015; Tyagi et al., 2021) and slope 
length index (LS), topographic position index (TPI) (Boria et al., 2014; 
Kalantar et al., 2020)., topographic roughness index (TRI) and vector 
roughness measurement index (VRM), land use, distance from the 
village, and rainfall were selected as the most effective factors for 
landslide occurrence in the Karganeh Watershed. 

2.4. Landslide hazard mapping 

The maximum entropy method is one of the ML techniques and a 
probabilistic estimation approach that has been widely utilized in recent 
years across various aspects of natural resources. It is based on presence-
only data (Philips et al., 2006). Originally designed for predicting species 
distribution, this method has gradually been adopted in other fields, 
such as landslide susceptibility prediction. The advantage of this method 
lies in its ability to predict the behavior of a species or phenomenon 
without requiring absence data; it utilizes a set of influencing factors 
(variables affecting landslide occurrence) along with presence points of 
the phenomenon (landslide locations for modelling) (Pandey et al., 
2020). Ultimately, a model is generated with the highest capability to 
identify susceptible areas for landslides. 

The RF model is a ML approach used for decision tree modelling 
(Kornejady et al., 2019). In this model, random sampling of data and 
variables is performed automatically and iteratively to generate a 
multitude of regression trees. To determine the optimal number of trees, 
an initial set of trees is used to produce a graph of the mean squared 
error (MSE) against a specific number of training and evaluation sample 

trees. This serves as a powerful analytical tool for exploring data and 
selecting the optimal number of trees in the RF model. The optimal tree 
count is chosen such that it minimizes the MSE while avoiding an 
excessive number of trees that would require extensive computational 
time for variable analysis. One of the primary parameters in 
implementing the RF model is the predictor K at each node for 
estimating the dependent variable (response) (Zhao et al., 2020). The 
model can also indicate the error associated with merging information 
from the generated trees via the Out-Of-Bag (OOB) error index, which 
can be used to optimize the number of trees for input data analysis 
within the software. Among the key outcomes of this model is the 
ranking of independent variables (factors influencing landslide 
occurrence) in the studied basin (Chen et al., 2019). 

This model is a supervised ML technique used for classification and 
data separation. In other words, after defining the input data 
(independent variables) and target data (dependent variables), the 
support vector machine (SVM) algorithm analyzes the relationship 
between these variables (training stage) and categorizes the data into 
distinct groups. In the SVM algorithm, each data sample is represented 
as a point in an n-dimensional space on a scatter plot (where n 
corresponds to the number of features), with each feature value 
determining the coordinates of the point. A hyperplane is then drawn to 
segregate the different classes from each other, with the optimal 
separation being achieved by the hyperplane that maximizes the margin 
between classes (Pham et al. 2016). The core idea of this algorithm 
involves transforming a binary classification problem—using training 
points—into a higher-dimensional space to find an optimal hyperplane. 
Data points near this hyperplane are called support vectors. Once the 
decision boundary is established, it can be used to classify new data 
points. Equations 3 illustrates a set of training samples: 

 

Xi = (i=1, 2, ..., n) Xi= (i = 1, 2, ..., n)                                                      (3) 
 

Training samples consist of two classes, Xi = ±1 Xi= ±1, indicating 
presence or absence, which serve as the target for the SVM model 
(Panahi et al., 2020; Balogun et al., 2021). 

A landslide hazard map was prepared by the RF algorithm. The RF 
model is one of the ML methods for decision tree modelling. In this 
study, R software and RF package were used in order to apply the RF 
model in the assessment of landslide hazard (Chapi et al., 2017; Chen et 
al., 2019; Zhao et al., 2020). The maximum entropy model in MaxEnt 
software was used in order delineate landslide susceptibility zones. To 
apply this model, the independent variables (factors affecting the 
occurrence of landslides) and the dependent variables (points of 
occurrence of landslides) were first converted into the appropriate 
format and entered into the MaxEnt software environment. Based on 
the principle of entropy, this model forms a network of communication 
between independent and dependent variables (Park, 2015; Pandey et 
al., 2020). In this study, ModEco software and SVM algorithm were used 
to implement the SVM model (Pham et al., 2016). Finally, the landslide 
hazard map was classified into five equal-interval hazard classes, 
including very low, low, medium, high, and very high (Karimi Sangchini 
et al., 2016). The (ROC) index was used to evaluate landslide hazard 
models (Pontius and Schneider, 2001). 

 

Table 1. Collinearity test between effective factors in landslides. 

VIF Tolerance Factors VIF Tolerance Factors 

1.06 0.8 Topographic Position Index (TPI) 1.6 0.62 Slope 
1.53 0.73 Topographic Roughness Index (TRI) 1.8 0.58 Aspect 
2.6 0.32 Vector Roughness Measure (VRM) 2.3 0.54 Elevation 
13.1 0.012 Soil texture 2.3 0.67 Geology 
1.61 0.82 Distance from village 1.02 0.78 Distance from river 
16.1 0.035 NDVI index 3.1 0.39 Distance from road 

18.4 0.063 Curvature Index 3.9 0.26 Distance from fault 
4.1 0.29 Landuse 2.7 0.44 River Power Index (SPI) 

2.1 0.48 Precipitation 3.5 0.51 Topographic Wetness Index (TWI) 

   2.5 0.26 slope length (LS) 
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2.1. Landslide risk map 

The overall landslide risk is estimated using the equation R=H×E×V 
(Varnes, 1984), where R represents the risk, H is the magnitude of the 
hazard (susceptibility), E denotes the elements at risk (also 
susceptibility), and V is the vulnerability level of the elements (Zezere 
et al., 2008). The hazard map serves as the primary basis for assessing 
landslide risks in the studied basin, and ultimately, the risk map is 
classified accordingly (Karimi Sangchini et al., 2011). Due to the lack of 
temporal landslide data, the susceptibility map was used as a substitute 
for the risk map in the risk assessment model. When the susceptibility 
map is incorporated into the risk equation, the resulting risk is semi-
quantitative. The elements at risk in this study include roads, buildings, 
fishing workshops, tourist sites, mosques, banks, health centers, power 
and gas transmission networks, water resources, and agricultural and 
pastoral activities. Damages to building contents and vehicles on roads 
can constitute a significant portion of the total damage; however, 
estimating these damages is challenging, and sufficient data are 
unavailable. Additionally, damages to human life (fatalities) are 
unquantifiable in this context. (Karimi Sangchini et al., 2011). 
Vulnerability encompasses several concepts, including (1) exposure: 
climatic exposure indicators include increases in temperature, heavy or 
light rainfall, droughts, and rising sea levels. The IPCC has predicted 
that the impacts of global warming will manifest as potential waves of 
extreme heat, heavy rainfall, droughts, and a reduction in tropical 
regions, and rising ocean levels over time (Parry et al., 2005); (2) 
sensitivity: the degree of a system’s sensitivity to climatic hazards 
depends not only on geographical conditions but also on economic and 
social factors such as population density and infrastructure. Sensitivity 
indicators may include geographical features, land use, individual 
characteristics, and industrial structures, including dependency on 
agriculture and industrial diversity; (3) Adaptive Capacity: adaptive 
capacity describes a system’s ability to cope with the extremes of climate. 
Generally, adaptive capacity relates to physical resources, access to 
technology and information, diversity of infrastructure, institutional 
capabilities (both governmental and non-governmental), and resource 
distribution. Indicators of adaptive capacity include economic 
capabilities, physical infrastructure, social capital, institutional capacity, 
and data availability. Economic capabilities reflect the available financial 
resources to reduce vulnerability arising from climate change, 
encompassing human resources, alternative technologies, and social 
capital (Cutter, 1996). 

To evaluate damages, smaller polygons of less than 10 hectares were 
merged with neighboring homogeneous polygons, forming a damage 
assessment map based on the landslide risk map in homogeneous 
polygons nearby. This map served as the basis for landslide damage 
evaluation in the study watershed. Residential areas (villas and rural  
 

 
 

houses), communication roads (asphalt and dirt roads), land use (forest, 
pasture, and agriculture), and water sources were selected as elements 
at risk. (Zezere et al., 2008). To calculate the vulnerability score of the 
elements, the existence of hazard and the conditions of each of the 
elements are important from the economic and ecological points of 
view. The elements that are in a higher hazard class have more 
importance and vulnerability score. To calculate the vulnerability, the 
combination of the intrinsic value of elements at risk and the hazard 
class in which these elements are located is used (Enrique et al., 2008). 
The final map was classified into very low, low, medium, high, and very 
high classes. 

3. Results 

3.1. Landslide inventory map 

After the investigation, it was found that 95 landslides were detected 
in the Karganeh watershed, which had a total area of 1438 hectares (5% 
of the Karganeh watershed area). 

 

 
Figure 2. Landslide distribution map in the Karganeh Watershed. 

 

3.2. Landslide hazard zonation 

Using the resulting models, the landslide hazard maps were created 
and categorized into very low, low, medium, high, and very high classes 
(Table 3 and Fig. 3). 

 

Table 2. The vulnerability core of elements at risk. 

Elements at risk Potential of elements at risk Increase coefficient Vulnerability number 

Roads 

pathway road, without infrastructure. 1 1-5 

The dirt road has infrastructure  2 1-10 

Asphalt road, with infrastructure 3 1-15 

The main road has infrastructure and increase  4 1-20 

Buildings 

Rural residential areas 2 1-10 

Urban residential areas 3 1-15 

Touristic, industrial areas, mosques, fishing workshop, post bank, school, mines, health center 4 1-20 

Water resources 

The spring 2 1-10 

Stream (rank 2 and above) 2 1-10 

Agricultural wells and pools 3 1-15 

Agriculture 

Rainfed agricultural 2 1-10 

The irrigated agricultural 3 1-15 

Garden 4 1-20 

Natural resources 
Rangelands 2 1-10 

Forests 3 1-15 
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Table 3. The scattering of area in diverse landslide hazard classes. 

 Random Forest (RF) Maximum Entropy (ME) Support Vector Machine (SVM) 

Susceptibility class Area (ha) % Area Area (ha) % Area Area (ha) % Area 

Very low 19681.29 66.9 7709.38 26.2 15240.48 51.8 

Low 1691.32 5.7 7134.48 24.2 3772.63 12.8 

Medium 799.74 2.7 6347.89 21.6 1774.75 6.1 

High 992.39 3.4 7342.38 25 4501.64 15.3 

Very high 6251.5 21.3 882.13 3 4126.74 14 

Total 29416.24 100 29416.24 100 29416.24 100 
 

 

 
 

 
 

 
Figure 3. Landslide hazard maps based on, (a): Random Forest (RF), (b): 
Maximum Entropy (ME), and (c) Support Vector Machine (SVM) 

 
 

The results of the validation evaluation of the models used in this 
research using the ROC curve method are shown in Figure 4. The zone 
below the ROC index diagram for the validation of the maximum 
entropy model was 0.787, the area under the ROC index diagram was  
 

 
 

 

 

 
 

Figure 4. ROC curves (a) Maximum Entropy (ME), (b) Support Vector 
Machine (SVM), and (c) Random Forest (RF). 
 
 

0.913 for the validation of the SVM model, the area under the ROC index 
diagram for the validation of the RF model measurement was 0.865. This 
shows that the models used in zoning and determining landslide prone 
areas in the Karganeh Watershed have a very good capability. The SVM 
model with ROC equal to 0.913 was selected as the best model in 
landslide risk assessment in the Karganeh Watershed. 

3.3. The results of landslide risk assessment 

The location of pastures, forests, and agriculture were prepared from 
the distribution of springs, the land use map, and the number and type 
of residential places, the length of roads and waterways were prepared 
from the 1:25000 digital topographic map. Based on this information, 
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maps of elements at risk and vulnerability were prepared. Using the 
general equation, the risk number was calculated and categorized into 
very low, low, medium, high, and very high classes. 

 

 
Figure 5. Element at risk map in the Karganeh Watershed. 

 

 
Figure 6. vulnerability map in the Karganeh Watershed. 

 

Table 4. Elements at risk classes in the Karganeh Watershed. 

Classes Number of elements Area (ha) % Area 

Very Low 0, 1 4663.37 15.85 
Low 2 10411.55 35.39 

Medium 3 8342.23 28.36 
High 4 4816.22 16.37 

Very High 5 1182.86 4.02 

Total  29416.24 100 
 

Table 5. Vulnerability classes in the Karganeh Watershed. 

Classes Vulnerability number Area (ha) % Area 

Very low 0.0-18 12508.88 42.52 
Low 18-36 9190.09 31.24 

Medium 36-54 4192.89 14.25 
High 54-72 1347.77 4.58 

Very high 72-90 2176.60 7.40 

Total  29416.24 100 
 

Table 6. The delivery of zone in diverse landslide risk classes. 

Class Pixel value Area (ha) % Area 

Very low 0-25 15049.11 51.16 
Low 26-50 4617.80 15.70 
Medium 51-75 4399.79 14.96 
High 76-100 2407.99 8.19 
Very high 101-125 2941.53 10.00 

Total  29416.24 100 

 
Figure 7. Risk map in the Karganeh Watershed. 

 

4. Discussion and conclusion 

In this study, it was tried to use all effective factors in order to evaluate 
landslide risk in Karganeh Watershed. In order to determine the best 
method of landslide sensitivity, three ML models, including maximum 
entropy, RF and SVM models were used in the Karganeh Watershed. In 
order to model landslide hazard, 70% of landslide points were used for 
model training and 30% of landslide data were used for model 
validation. The maximum entropy model calculates the complex 
distribution algorithm and by providing diverse results, it helps a lot to 
understand the phenomenon and process of occurrence and reaction of 
factors. This method is one of the quantitative methods of determining 
sensitivity and it is one of the models that has received a lot of attention 
in the last 10 years and has been used by researchers in different parts of 
the world. Convertino et al. (2013) in Italy and Kim et al. (2015) in South 
Korea have used the maximum entropy method in their studies. Based 
on the results obtained from this model, 50.2% of the area of the area is 
in the very low and low sensitivity class, 21.6% is in the medium 
sensitivity class, and 28% is in the high and very high sensitivity 
regionalization level. After evaluating this model with the ROC index, 
the amount of surface area under the graph in the validation stage was 
0.787, this result indicates the average capability of the model in zoning 
and determining areas prone to landslide susceptibility in the Karganeh 
Watershed. The SVM model is one of the supervised ML models used 
to classify and separate data. The main idea of this algorithm is a binary 
classification using training points, which transforms the original input 
space into a space with higher dimensions, in order to find a desirable 
hyperplane. The training points that are close to the desired plane are 
called support vectors. Once the decision level is obtained, it can be used 
to estimate new data. Peng et al. (2014), Hang et al. (2015), Lee et al. 
(2017) and Pham et al. (2016) have used the SVM algorithm in their 
studies for landslide susceptibility zoning. Based on the results obtained 
from this model, 64.6% of the district surface area is in the very low and 
low sensitivity class, 6.1% is in the medium sensitivity class, and 29.3% is 
in the high and very high sensitivity area. The amount of surface area 
under the ROC index diagram was obtained at 0.913 in the validation 
stage, which indicates the very good capability of the model in 
determining areas prone to landslide susceptibility in the Karganeh 
Watershed. The RF model forms a cluster of decision trees. During the 
modelling, it involves the effective underlying factors and the evidence 
of landslide occurrence. Moreover, with high repetition, it removes the 
inefficient decision branches in the modelling process and finally 
continuously improves the predictions. By minimizing the prediction 
error, it has a very high power in predicting landslide susceptibility. 
Similar results have been obtained in the researches of Chen et al. 
(2017b), Rahmati et al. (2018), Pourqasmi, and Rahmati (2018). Based 
on the results obtained from this model, 72.6% of the area of the district 
is in the very low and low sensitivity class, 2.7% in the medium 
sensitivity class, and 24.7% of the area is in the high and very high 
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sensitivity class. The amount of surface area under the ROC index 
diagram was obtained at 0.865 in the validation stage, which indicates 
the good capability of the model in determining landslide susceptibility 
areas in the Karganeh Watershed. According to the results obtained 
from the evaluation of the models using the area under the ROC curve, 
the SVM model was selected as the best model in the zoning of landslide 
susceptibility in the Karganeh Watershed. This shows that this model 
has high accuracy in evaluating the landslide susceptibility in the studied 
area. By comparing the results obtained with the real conditions through 
field visits, there is a very high agreement between the results of the 
landslide susceptibility map using the SVM and the actual evidence in 
the study area. According to the landslide susceptibility map using the 
SVM model, the areas with high susceptibility are located on the steep 
slopes upstream and at high altitudes, which caused the upstream 
material to fall down due to the high slope and the effect of gravity. In 
addition, a large part of the studied area is in low slopes with agricultural 
and orchards, which have low and very low susceptibility in terms of 
landslide occurrence. After the zonation using the SVM model in the 
Karganeh Watershed, nearby 24.7% of the watershed area is placed in 
high and very high hazard classes. The results of this research also 
showed that the SVM model is a promising approach for landslide 
susceptibility modelling. The results of this research also showed that 
the maximum entropy model is a promising approach for landslide 
susceptibility modelling. This model has a map with high accuracy in 
identifying and separating areas sensitive to the occurrence of landslides. 
It helps decision makers and engineers to introduce areas with different 
sensitivity to landslides to build a suitable place to prevent the 
destruction of sediment collecting structures, management of slopes, 
drainage and water transfer from sensitive areas close to the 
implementation of the structure, development of road network and land 
preparation programs. 

In this research, the Warren's equation (R = H.E.V) was used to 
evaluate landslide risk in the Karganeh Watershed. According to this 
equation, a hazard map (H), elements at risk map (E), and a 
vulnerability map (V) are needed. Hence, to prepare the risk map, the 
elements at risk were identified, and then, by applying the degree of 
vulnerability of each element, the landslide risk number was calculated 
from the risk equation and classified into five classes. Zezere et al. (2008) 
in North Lisbon in Portugal, Saldivar-Sali et al. (2007) in Baguio City, 
Philippines, Kunlong et al. (2007) in China, Remondo et al. (2008) in 
Spain used this equation to evaluate the landslide risk. 

In this research, four road factors, including residential areas, water 
resources, agriculture, and natural resources were selected as elements 
at risk. Zezere et al. (2008) selected road and building as elements at risk 
in North Lisbon, Portugal. Enrique et al. (2008) in Quantamo, Cuba, 
selected houses, schools, cemeteries and roads as elements at risk. 20.4% 
of the Karganeh Watershed was classified as high and very high 
elements at risk. 12% of this watershed was placed in the class of high 
and very high landslide vulnerability. The reason for that is the absence 
of important facilities, large factories, important structures, and large 
recreational complex in this watershed. 

Finally, according to the risk map of the study area, 18.2% of the 
Karganeh Watershed, equivalent to 5349.5 hectares, was located in the 
high and very high-risk class. 67 % of this watershed, equal to 19666.9 
hectares was in the low and very low risk class. As a result, due to the 
presence of elements at risk in the region, most of the region has low 
and very low risk. In addition, this makes the management work to be 
concentrated on the sectors that have a lot of damage and reduces the 
waste of time and money. 
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