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A B S T R A C T 

 

Interpreting core samples is a critical task in mineral exploration, essential for mine planning and design. Core Recovery (CR) and Rock 
Quality Designation (RQD) are key factors in assessing the geomechanical properties of a deposit during coring operations. This is particularly 
important in porphyry deposits, which are notable for hosting significant, deep copper mines. The accurate determination and interpretation 
of core recovery and RQD are crucial for these porphyry deposits. This study applied number-size (N-S) fractal modelling to enhance the 
interpretation of core recovery and RQD in ongoing exploratory drilling at the Sungun porphyry deposit, a prominent copper mine in Iran. 
Our findings revealed that core recovery and RQD exhibited a multifractal nature. Key zones for core recovery and RQD began at thresholds 
of 75% and 63%, respectively, with high-intensity zones for both parameters started at 89%. Additionally, the study explored correlations 
between these zones and other drilling parameters, such as mud flush return, drilling time, and core length, using an overall accuracy (OA) 
matrix. These parameters were analyzed using the N-S fractal model, indicated a strong relationship between core recovery, core length, flush 
returns, and drilling time. This integrative approach enhances our understanding of the deposit's geomechanical properties and guides more 
effective exploration strategies. 
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1. Introduction 

Core drilling is a crucial procedure in the detailed and supplementary 
exploration phases across various mineral deposits. This operation 
yields valuable parameters, notably the Core Recovery (CR) and Rock 
Quality Designation (RQD), which are vital for the geomechanical 
interpretation and the accuracy of exploratory data [1]. These 
parameters are instrumental in optimizing core drilling operations, 
calculating bit penetration rates, and facilitating resource/reserve 
evaluation and mine design/planning [2-5]. Moreover, the RQD is an 
essential metric for determining the Rock Mass Rating (RMR) across 
various mining environments [5-7]. These metrics gain added 
significance in magmatic/hydrothermal ore deposits, particularly 
porphyry deposits, which are major sources of copper, molybdenum, 
and gold. Porphyry deposits also host some of the world's largest and 
deepest open-pit mines, such as Escondida, Chuquicamata, Bingham 
Canyon, Grasberg, Sarcheshmeh, and Sungun. The host rocks of these 
deposits are typically sub-volcanic and plutonic massive units, including 
granodiorite, quartz-diorite, monzodiorite, monzogranite, and quartz-
monzonite, noted for their high hardness values [8-10]. Core recovery is 
also crucial for the geochemical analysis of core samples, and samples 
with a CR lower than 75% are generally considered unsuitable for 
chemical analysis. 

 
 
 
Statistical, geostatistical, and fractal methodologies have been 
extensively applied in describing geological features and phenomena, 
particularly in mining-related fields. These approaches are instrumental 
in understanding lithological units, alteration zones, ore grades, 
geomechanical characteristics, and the RQD analysis [11-14]. 
Introduced by [35], fractal geometry, a principal nonlinear geometry, 
has been widely adopted in geological sciences and mining engineering 
([15-18]; [19-22]). This has led to the development of various 
multifractal models for geotechnical, geophysical, petrophysical, and 
geochemical modelling to define different zones ([19], [23-27], [41]). 

For example, Yasrebi et al. [4] employed the RQD-Number (RQD-
N) and RQD-Volume (RQD-V) methods at the Kahang porphyry 
deposit in Central Iran to aid in rock mass characterization. 
Additionally, [12] utilized multivariate fractal modelling to delineate 
geomechanical zones in the Chadormalu iron open pit mine, 
demonstrating the effectiveness of these advanced mathematical 
techniques in practical mining applications. The purpose of this 
procedure was to enhance the use of fractal modelling for CR and RQD 
to improve the interpretations of core drilling operations at the Sungun 
Cu porphyry deposit, a world-class open-pit mine in Iran. We 
specifically employed the RQD-N and Core Recovery-Number (CR-N) 
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multifractal models to differentiate various rock mass zones obtained by 
coring data via the Sungun deposit. Subsequently, the outcomes derived 
from these fractal models were cross-referenced and validated by 
associated drilling parameters, such as mud flush return, drilling time, 
and core length, which were analyzed using an overall accuracy (OA) 
matrix (see [40]). This integrative approach seeks to establish a robust 
framework for assessing drilling efficiency and geological consistency in 
complex ore deposits. 

2. Materials and methodology 

2.1. Case study 

The Miocene Sungun Cu-Mo porphyry is situated to the northwest 
of the Urumieh-Dokhtar magmatic belt in Northwestern Iran, a key 
geological feature depicted in various studies (Fig. 1). This region is 
significant as it sits along the suture zone between Eurasian and Afro-
Arabian plates, where the subduction of the Neo-Tethys oceanic plate 
has led to the formation of major Iranian porphyry deposits [28-31]. 

 

 
(a) 

 
Fig. 1. a) Location and geological map of the Sungun copper porphyry deposit [34], 
and b) a core of mineralized zone from Sungun mine. 

The earliest intrusive activity in this area is represented by a quartz-
monzonite pluton, which serves as the primary host for the porphyry 
Cu-Mo ores found in the region [32]. The Sungun mine itself 
encompasses the mineral-rich Sungun porphyry along with six groups 
of post-mineralization dykes that are both cross-cutting and 
lithologically distinct. These dykes, which display a NW-SE orientation 
and SW dip, vary in composition, including quartz diorite, gabbro, 
diorite, dacite, lamprophyre, and microdiorite [32]. 

Additionally, the mine features extensive alteration zones, such as 
propylitic, argillic, phyllic, and potassic zones, which play a crucial role 
in the geology of the mine and its potential for mineral extraction. These 
alteration zones are key indicators of the hydrothermal processes that 
have significantly influenced the mineralogy and economic potential of 
the Sungun deposit. 

The oldest geological formations in this deposit consist of the 500-
meter sequence of Cretaceous limestone, which is interspersed with 
layers of shale. This stratigraphy is crucial for understanding the 
sedimentary history and potential mineral content of the region. During 
ongoing exploration and exploitation activities, the estimated reserves 
and resources have shown significant increases, reaching over 850 
million tons and 5 billion tons, respectively [33]. This substantial growth 
in estimated reserves and resources highlights the economic and 
geological potential of the area, suggesting a rich deposit that could be 
vital for future mining endeavors. 

2.2. Dataset 

The coring data collected from the Sungun mine comprised 13,382 
core samples obtained from 27 drilled boreholes using four different 
drilling machines (Fig. 2). This extensive dataset included valuable 
parameters, such as CR, RQD, the length of the cores, the time of 
drilling, and the flush return of mud drilling. These boreholes were 
drilled as part of a new exploration initiative at the Sungun mine during 
the years 2022 and 2023. 

Importantly, the coring data were extracted from the mineralized 
zones of the Sungun porphyry and also from a porphyry stock. This dual 
source of samples enriched the dataset, providing a comprehensive view 
of the geological and mineralogical variability within the mine. The data 
thus not only enhances our understanding of the existing mineral 
resources but also aids in the effective planning and execution of 
subsequent mining and exploration activities. 

 

 

 
Fig. 2. Several exploratory cores from drilling operation in the Sungun mine. 
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2.3. N-S model 

The N-S modelling is described by this following equation [35]; also 
see [15]; [36]; [38-39]: 

 

N (≥ ρ) = Fρ−D                                                                                   (1) 
 

The ρ shows CR and RQD values; N (≥ ρ) indicates samples’ 
cumulative number for RQD or CR values equal or more than to ρ; F 
and D are a constant and the scaling exponent/fractal dimension for 
distribution of RQD values. According to [35], log–log plots based on 
N(≥ρ) against ρ depict straight line segments with various slopes − D 
corresponding to different RQD or CR break points. 

2.4. Overall Accuracy (OA) matrix 

The OA matrix [40], is a 2x2 matrix designed to calculate the 
overlapping among two binary models/datasets. This matrix is 
particularly useful in assessing the correlation and consistency between 
classes derived through fractal modelling of the CR and RQD, as 
depicted in Table 1. 

In practical terms, the OA matrix compares predicted outcomes to 
actual values, helping to quantify the degree of agreement between two 
datasets. The matrix setup typically involves two categories or classes 
from each model, with the matrix entries reflecting counts of data points 
falling into each combination of predicted and actual categories. 

If the OA value exceeds 0.5, this indicates a satisfactory level of 
overlap, meaning that the two datasets or models have a substantial 
agreement or consistency in the classifications they provide. This 
measure is critical when evaluating the effectiveness of fractal models in 
geotechnical analysis, allowing researchers and engineers to verify the 
reliability of interpretations made from core sample data. The 
application of the OA matrix in this context supports more informed 
decision-making in mining exploration and development activities [37]. 

3. Results and Discussion 

3.1. Application of fractal modelling 

The N-S fractal modelling applied to the CR and RQD data 
delineated four and five zones respectively, as indicated in the related 
log-log plots (Fig. 3). This demonstrated the multifractal nature of both 
parameters, also illustrated in Fig. 3. The major zones for the CR and 
RQD commenced at thresholds of 75% and 63%, respectively. 
Additionally, the threshold for high-intensity zones for both parameters 
was consistent, started at 89%. Conversely, zones categorized as low 
quality for the CR and RQD were identified below 45% and 12%, 
respectively. 

Furthermore, the N-S fractal modelling was applied to additional 
drilling parameters, such as flush return of mud drilling, time of drilling, 
and length of cores, as depicted in Fig. 4. The flush return exhibited 
bifractal behavior with a key threshold at 76%. The length of cores was 
differentiated by three thresholds: 0.5, 0.9, and 2 meters, with lengths ≥ 
2 meters constituted the main zone for this parameter. The log-log plot 
for the time of coring operation revealed three thresholds at 32, 80, and 
158 minutes. Notably, times shorter than 80 minutes were identified as 
the major zone for drilling operations and were associated with the 
higher values of CR and RQD. Consequently, the primary zones for 
flush return of mud drilling, time of drilling, and length of cores were 
established at ≥76%, ≤80 minutes, and ≥2 meters, respectively. 

3.2. Application of OA matrix 

The N-S model findings revealed significant correlations between the 
main zones for the CR and RQD, as well as the major operational 
parameters, including time, length, and flush return of mud drilling 
(Tables 2 to 9). Specifically, the correlation between high-intensity 
zones where both the CR and RQD were ≥89% was approximately 61%, 
as detailed in Table 2. Moreover, the major zones where CR values were 
≥75% and RQD values were ≥63% exhibited a correlation of about 79%, 

as depicted in Table 3. These correlations underscored a direct 
relationship between CR and RQD, indicated that higher recovery and 
rock quality were consistently associated with the drilling cores from the 
Sungun mine. 

 

 
 

 
Fig. 3. CR-N and RQD-N log-log plots for the Sungun mine drilling data. 

 

 

 

 
Fig. 4. The N-S log-log plots for time, length, and flush return in the Sungun mine 
drilling data. 
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Futhermore, high-intensity CR zones with values ≥89% were 
compared with a flush return of ≥76%, as presented in Table 4. The OA 
of this comparison was approximately 61%, indicated a proper 
correlation between these parameters. Furthermore, the OA between 
the high-intensity zone for CR and the length of cores, with respective 
thresholds of ≥89% and ≥2 meters, was 62%. Moreover, the correlation 
between the high-intensity CR zone and coring times of ≤80 minutes 
showed a robust OA of about 80%, as noted in Table 6. These 
comparisons demonstrated a direct correlation between CR and both 
the length of cores and the flush return of mud drilling. Conversely, 
there was a reverse relationship between CR and the timing of the 
coring operation, suggesting that faster drilling times may correspond 
to higher core recovery rates. High-intensity RQD zones (≥89%) were  
 

compared with the main zones of flush return of mud drilling, time of 
drilling, and length of cores. The comparison revealed a less than 
optimal OA of 48% between the high-intensity RQD zone and the main 
timing of coring (≤ 80 minutes), as shown in Table 7. This lower OA 
suggested that other factors, such as the experience of the operator and 
the quality of the drilling rig, might significantly influence the results. 

Conversely, there was a strong correlation between the high-intensity 
RQD zone and the main zone of core length, with an OA of 80%, 
indicated a good relationship, as detailed in Table 8. Also, a direct 
relationship was observed between the high-intensity RQD zone and the 
main zone of flush return of mud drilling, with an OA of about 57%, as 
depicted in Table 9. These findings highlight varying degrees of 
correlation between RQD and different drilling parameters. 

 

Table 1. OA Matrix for Comparing Fractal Modelling Results of the CR and RQD. 

  CR fractal model  

  Inside zone Outside zone 

RQD fractal model Inside zone True positive (A) False positive (B) 
 Outside zone False negative (C) True Negative (D) 

 
Type I error=C/(A+C) Type II error=B/(B+D) 

OA=(A+D)/(A+B+C+D) 
 

Table 2. OA Matrix for Comparing of High Intensity Zones for the CR and RQD. 

  CR≥89%  

  Inside zone Outside zone 

RQD≥89% Inside zone 4529 6958 
 Outside zone 2 6422 

 
Type I error=0.0004 Type II error=0.52 

OA= 0.61 
 

Table 3. OA Matrix for Comparing Performance of Major Zones for the CR and RQD. 

  CR≥75%  

  Inside zone Outside zone 

RQD≥63% Inside zone 8233 4585 
 Outside zone 5 8795 

 
Type I error=0.0006 Type II error=0.34 

OA= 0.79 
 

Table 6. OA Matrix for Comparing Performance of High Intensity Zones for the CR and Timing of Coring. 

  Timing of coring≤ 80 minutes 

  Inside zone Outside zone 

CR≥89% Inside zone 8833 2654 
 Outside zone 1714 9014 

 
Type I error=0.16 Type II error=0.99 

OA= 0.803 
 

Table 7. OA Matrix for Comparing Performance of High Intensity Zones for the RQD and Timing of Coring. 

  Timing of coring≤ 80 minutes 

  Inside zone Outside zone 

CR≥89% Inside zone 3525 1813 
 Outside zone 7022 4547 

 
Type I error=0.66 Type II error=0.28 

OA= 0.48 
 

Table 8. OA Matrix for Comparing Performance of High Intensity Zones for the RQD and Length of Cores. 

  Length of cores≥ 2 m  

  Inside zone Outside zone 

RQD≥89% Inside zone 4425 913 
 Outside zone 2708 9761 

 
Type I error=0.38 Type II error=0.085 

OA= 0.80 
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Table 9. OA Matrix for Comparing Performance of High Intensity Zones for the RQD and Flush Return of Mud Drilling. 

  Flush return≥76%  

  Inside zone Outside zone 

RQD≥89% Inside zone 2362 2975 
 Outside zone 3811 6596 

 
Type I error=0.62 Type II error=0.31 

OA= 0.57 

 

 

4. Conclusions 

The findings from this study highlighted a direct correlation between 
CR and RQD in the Sungun copper mine. This relationship likely arose 
from geological specifics, particularly related to drilling within the 
Sungun porphyry. Additionally, CR showed a robust positive correlation 
with the flush return of mud drilling, the duration of drilling, and the 
length of cores. 

Moreover, positive relationships existed between RQD and both the 
length of cores and the flush return of mud drilling. However, the 
correlation between RQD and the timing of coring was moderate, falling 
below 50%. This lesser correlation may be attributed to factors, such as 
the experience of the drilling operator and the capability of the drilling 
equipment. Additionally, geological features, such as faults and fractures 
may also significantly influence this outcome. Deep core drilling is an 
important and general operation for porphyry deposits exploration, 
such as Sungun deposit. This methodology can be used for better 
designing of core drilling grid and drilling project for optimization of 
core drilling operation, e.g., increasing of velocity, CR, RQD and also 
better geochemical analysis. 
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